Spin Geometry

Lectures given by
Bernhard Hanke

Lecture notes taken by
Markus Upmeier

Winter term 2015/2016, University of Augsburg
April 27, 2021

Note: This manuscript needs to be revised and is not in its final form.

Contents

{1 Vector bundles, Differential Forms, Connections, and Curvature] 3
[LLI__Sections of Vector Bundlesl. . . . . . . . . . . . . .. 3
1.2 Tangent Bundle|. . . . . . . . o oo 3
1.3 Constructing New Vector Bundles from Old| . . . . . ... .. ... ... .. .. .. ..... 4
[L4 Differential Formsl . . . . . . . . . o 4
I1.5° Homomorphism bundles and Tensors| . . . . . .. ... ... ... ... .. .. ......... 4
[L.L6  Covariant Derivatives . . . . . . . . . . . . e 5
[L.7 Parallel transport|. . . . . . . . o 6
.8 Riemannian metricsl . . . . . . . ... Lo e 7
O Curvalurd . . . . . oo o e e 8
[LI0 Rical and scalar curvaturel . . . . . . . . . oL 9
IL.11 Normal coordinatesl. . . . . . . . . . . . 10
|[1.12 Families of geodesics and Jacobi fields| . . . . . ... ... ..o oo 11
|1.13 Geometric interpretation of curvature via Taylor expansion of the metric|. . . . . . . ... .. 11

2 Dirac bundles and Dirac operators| 14
2.1 The Clifford Algebral . . . . . . . . . . . . 14
2.2 Relation to the Exterior Algebral . . . . . . . .. ... . oo 15
2.3 Hodge Star Operator] . . . . . . . . . . . . e 17
2.4 Chfford Modulesl . . . . . . . o 17
2.5 'The Laplacian on Manifolds| . . . . . . . . . . .. ... ... .. .. 19
2.6 The Bundle of Iixterior Forms as a Dirac Bundlel . . . . . ... ... ... ... .. .. 19

[3 Spin Structures on Manifolds| 21
3.1  Constructing Clifford Bundles as Associated Bundles| . . . . . . . ... ... ... ... .... 21
8.2 The Pin and Spin Group|. . . . . . . . . .o 22
3.3 The Solution: Constructing Clifford module Bundles| . . . . . ... .. ... ... ... .. .. 24
3.4 Interlude: Principal Bundles|. . . . . . . . .. o oo 25

3.5 The Connection on the Clifftord Bundle £/ — M and the corresponding Weitzenbock Formula] 26




[4  Linear Analysis on Manifolds| 29
4.1 Linear Differential Operators| . . . . . . . . . . . . . 29
4.2 Sobolev Spaces| . . . .. L 34
4.3 Analysis of Dirac Operators| . . . . . . . . . . . . . L 38
4.4 Application: Hodge Theory| . . . . . . . . . . . o 47

[ Asymptotics of the Heat Kernel| 48
.1 The Heat Equation| . . . . . . . . . . o o 48
.2 Eigenvalue Growth ot D . . . . . . . . . . o o 49
b.3  Asymptotics of the Heat Kernel| . . . . . . . . . ... . o oo o 50
5.4 Spectral Geometry| . . . . . . L L e e 55

6 The Index Theoreml 55
6.1 The Index of Graded Dirac Operators| . . . . . . . . . . . .. .. . .. 55
6.2 The Getzler Filtration| . . . . . . . . . . . . e 60
6.3 The Getzler Symbol| . . . . . . . .. 66
6.4 The Mehler Formulal . . . . . . .. .. o 73
0.0 General. . . . .. L L e 75
6.6 Proof of the Index Theoreml . . . . . . . . . . .. . 77
6.7  First Applications ot the Index Theorem| . . . . . . . . .. ... .. ... ... ... ...... 77

The subject of these lecture notes is global analysis, in particular the global analysis of the Dirac operator.

We shall be concerned with the study of geometrically motivated linear PDEs on manifolds, which will then
give us information on the geometry of the underlying manifold. The most important aspects of this subject
include the following:

e In keeping with our global point of view, we shall consider PDEs on sections of smooth vector bundles
on differentiable manifolds.

e The study of the (generalized) Dirac operator. For their construction we shall will need the concepts
of Clifford algebras and Spin structures.

e The solution theory for linear PDEs is based on the theory of Hilbert spaces, in particular Sobolev
spaces.

e Our main interest will be in elliptic PDEs, the Dirac operator being the most important example.
For these operators we shall develop the theory of elliptic regularity. An important application is the
Hodge Theorem on closed Riemannian manifolds, asserting that one can always find a unique harmonic
representative in every de Rham cohomology class.

e We will study the spectrum of elliptic operators, which (over compact manifolds) consists only of
eigenvalues. It is interesting to ask what geometric information is encoded in the spectrum, which is
the topic of spectral geometry.

e The main goal of these lecture notes is to explain the Atiyah-Singer Index Theorem. It strikes a bridge
between analytic properties of elliptic operators and global topological properties of the manifold in
question, expressed through the characteristic classes of the tangent bundle.

e The proof of the Index Theorem presented in these lecture notes is based on the heat equation and the
study of the asymptotics of the heat kernel.

e As applications we will discuss the Signature Theorem of Hirzebruch in differential topology, obstruc-
tions for the existence of positive scalar curvature metrics on spin manifolds and integrality theorems
for characteristic numbers.



These lecture notes are based on the book FElliptic operators, topology, and asymptotic methods by John
Roe (Pitman Research Notes in Mathematics 395, 1998). In the following, we will make references to this
book by ‘[Roe]’.

1 Vector bundles, Differential Forms, Connections, and Curvature

Good references for the material in this section include
Lawrence Conlon, Differentiable manifolds, Second Edition, Modern Birkh&user Classics
(which can be downloaded via our library) as well as sections 8 and 9 of

John Milnor, Morse theory, Princeton University Press.

1.1 Sections of Vector Bundles

Let M be an n-dimensional smooth manifold and let V' — M be a smooth real vector bundle. The real
vector space of smooth functions on M will be denoted by C*°(M). The C°°(M)-module of smooth sections
C>(V) is the space of all smooth maps

Y- M-V

with Y (z) € V, (the fiber over z € M) for all x € M. Some authors also use the notation I'(V) to denote
this space. If we let R — M denote the trivial vector bundle, we hence have C*°(M) = C*°(R). In other
words, sections of vector bundles may be considered to be generalizations of functions.

1.2 Tangent Bundle

A particularly important vector bundle is the tangent bundle TM — M of a manifold. Sections of this
bundle are called smooth vector fields on M. In local coordinates (z!,...,2™) on an open subset U C M, a

vector field X € C°(T'M) takes the form
Xlp =Y X'
i=1

with smooth coefficient functions X?. Here, 9; denotes the directional derivative in the i-th coordinate
direction. For a smooth function f on U and x € U, we have 0;(z)(f) = ggi (x). If X € C*°(TM) is a vector
field and f € C°°(M) we define a function

Vyf=Xf: M =R

as follows. On a coordinate neighborhood U we let
(X)) =) X'0(x)(f) (zel).
i=1
It is easy to check that this definition is independent of the choice of local coordinates. Indeed, if (vt ..., y")
is another set of coordinates and if we let g‘z] denote the Jacobian of the coordinate transform from x to vy,
then we have

of =0y of
Oxt _j:I Oxt Oy’

The expression X f is also called the Lie derivative of f in direction of X. It is a derivation meaning that
we have

X(fo)=Xf-9+f Xg (f,geC™(M)).
As shown in a course on differential geometry, the space of derivations of the algebra C°°(M) may be
identified with the space of vector fields on M.



1.3 Constructing New Vector Bundles from Old

We recall that any functorial (and smooth) construction of vector spaces (such as the dual space, direct
sums, tensor products, homomorphism spaces, exterior and symmetric powers) may be applied fiber wise to
vector bundles. Hence we have the direct sum Vi @ Vo — M of vector bundles V;,V5 — M and the dual
vector bundle V* — M with fiber V* over x € M. For another example, the fiber of Hom(V;, V3) over
x € M is Hom ((V1)z, (Va)2).

1.4 Differential Forms

An important example of this construction is the cotangent bundle T*M of a manifold. Sections of T* M
are called differential forms. We write Q'(M) = C°°(T*M). The basis dual to 9y,...,d, will be denoted
dzl, ... dx™. More generally, we will use the notation Q™ (M) = C°°(A™T*M). By choosing local coordi-
nates on U C M a differential 1-form w € Q'(M) may be expressed as

wly = Z w;da’

1<i<n

with smooth coefficient functions w; € C*(U).
There is a unique sequence of linear maps

d™: Q™M) — Q" (M)

satisfying
o df =37, (0:if)dx’
e d*>=0

e dwAn) =dwAn+ (=1)%sW)u Ady

Because d? = 0 we may define
ker(d™)
im(dm—1)
This is the m-th de Rham cohomology of M. Together with the wedge product it is a graded commutative
ring with unit, i.e. [w] A [] = (—1)de&@)-desm) ] A [w)].

If M is a closed Riemannian manifold, we will prove later (see Hodge theory) that every cohomology class
contains a unique harmonic representative. This means that Aw = 0 for the Hodge-Laplacian on m-forms
(see also exercise 4 on worksheet 1). The Theorem of de Rham identifies the so defined de Rham cohomology
with the singular cohomology of M.

Hip (M) =

1.5 Homomorphism bundles and Tensors

Suppose V, W are vector bundles on M and let ¢ € C*°(Hom(V,W)) be a section of V* @ W. Then we may
define a linear map ¢: C°(V) — C>(W) by

This assertion has a converse, which will be discussed on the exercise sheets:

Proposition 1. Every C™(M)-linear map f: C®(V) — C®(W) can be written as f = é for a unique
¢ € C>*(Hom(V, W)).

In other words: f: C°(V) — C°°(W) being C*°(M)-linear is equivalent to f(X)(x) being dependent
only on X (z) (so that f is ‘tensorial’).



Proof. The proof has two steps. First, we prove that f(s)(p) depends only on s|y if p € U. For this it suffices
to show that s|y = 0 implies f(s)(p) = 0. Let x be a smooth function with x(p) =0 and x|ynv = 1. Then
XS =8, SO

f(s)(p) = f(xs)(p) = x(p) f(s)(p) = 0.

In the second step, we show that f(s)(p) depends only on the value s(p). This may then be taken as
definition for ¢(p)(s(p)) and it has the required property. For this, suppose s(p) = 0. We wish to prove
f(s)(p) = 0. Let (U,¢ = (x,...,2™)), be a chart neighborhood centered at p (i.e. ¢(p) = 0) in which
V = U x R*. Then s may be written in this local frame as

k

sly =Y flei,  freCe(U).

i=1

By assumption, fi(p) = 0. Using the first step, we get

f(s)(p) = f(slv)(p) :Zfi(p)f(ei) =0. O

Introducing the notation Q™ (V) = C°(A™T*M ® V'), we may therefore identify elements of Q! (V') with
C°°(M)-linear maps C°(TM) — C>=(V).

1.6 Covariant Derivatives

For X € C*(M) we want to generalize the directional derivative X f from functions f to tensor fields
(e.g. differential forms). In a vector bundle V' of rank k, every point x € M has an open neighborhood
U C M and a smooth vector bundle isomorphism

Vg =U x R*,
In this way, the standard basis (e, ...,e;) of R¥ defines local sections ey, ..., e, of C®(V|y). At every
point & € U, the evaluations ey (z),...,ex(x) define a basis of V,.. Therefore any section Y € C*°(V) may

be expressed locally as
k
Yip =) Y'e
i=1

for smooth coefficient functions Y?: U — R. We call (ey,...,ex) a local frame of V over U. If we choose
local coordinates (z!,...,2™) on U we could try to define

Vx(Y) =) X(aiY)o;.

However, this depends on the choice of trivialization of V and on the choice of local coordinates (z*,...,z").

In general, we make the following definition:
Definition 2. A connection on V' is an R-linear map

V:C®(TM)@r C®(V) = C*(V),(X,Y)— VxY

satisfying the following properties for f € C*(M):

1. VixY = fVxY,

2. Vx(fY)=(Xf)Y + fVxY.



We call VxY the covariant derivative of Y in direction of X. For fixed Y the map X — VxY is C*(M)-
linear. However, for fixed X the map Y — VY is only R-linear. On the exercise sheets we will see that
the set of all connections is an affine space over Q' (End(V)) and that the value of VxY at z € M depends
only on the value of Y in a neighborhood of z. Hence the covariant derivative is a local operator.

By choosing trivializations V|y = U x R™ and TM|y = U x R™ we may define functions I‘fj: U — R by

the equations
Vaiej = fojek

(as above, the sections e; correspond in the trivialization of TM|y to the standard basis of R™.) The
functions Ffj are called the Christoffel symbols of V (with respect to the given trivializations). Then the
covariant derivative of Y = Y7e; may be expressed as

VZ'<Yj€j) = (8in)€j + Yijjek. (1)

Here we have used the notation V; = V,,. By defining

k
€ — Z Fijek

we get an element of C°°(End(V)). We identify a section Y with a smooth map (Y!,...,Y™): U — R™.
Formula may be restated as

ViYy =0,Y+T,-Y
where T'; = T'}; is viewed as an (m x m)-matrix with values in C>(U), the row index being & and the column
index being j. In this sense we have the equation

V:,=0;+T;.

On the other hand, any n-tuple of sections I', ..., I, € C*°(End(V)) defines a connection on V |y by setting

1.7 Parallel transport

The geometric interpretation of a covariant derivative is that it gives a notion of parallel transport. Let
v: [a,b] — M be a smooth curve in M. A section of V along 7 is a smooth map X: [a,b] — V with
X(t) € Vi for all t € [a,b] (i.e. a section of the pullback of V' along 7).

A covariant derivative on V also determines a covariant derivative V; on sections along -, uniquely
characterized by the following conditions:

1 Vi(X +Y) = Vi(X) + Vy(Y)
2. Vi(fX) = %X+f~VtX for smooth f: [a,0] = R
3. For a section Y of V and X (t) = Y (y(t)) we have V;X = VY.

This follows easily by choosing local coordinates (x!,...,2™) and a local frame (ey,...,e;) of V. Then

a section Y along v may be written as
Y =) Ve,

for smooth Y7: [a,b] — R. It is necessary and sufficient that
dY? ;
VY = Z W@,‘ +Y VA//(t)ei

We have .
d~*

VoY =

drt , . dy’ ;
VY = %(aiyjej +YIViej) = ——ej + YV,

This proves 3. from above.



Definition 3. A section Y of V' along ~y is called parallel if
VY =0.

This equation is an ordinary linear differential equation of first order on the space of sections of V' along
7 on the coefficient functions (Y!,...,Y*). For any given initial value Y (0) € T',(g) = R" the general theory
of such equations gives us a unique solution of this differential equation. The resulting vector field Y is called
the parallel extension of Y (0) along «. From the uniqueness of the solution of such equations we see that
linearly independent choices of Y'(0) induce linearly independent parallel translates Y (¢) for all ¢ € [a, b].
Choosing a basis (ey, ..., ex) of V, we therefore obtain a unique parallel frame (eq, ..., ex) of V along ~.

Suppose that X € T, M and that v: (—e,+¢) — M is a curve with 4/(0) = X. Let (e1,...,ex) be a
parallel frame along . For a section Y of V we may write

Y (1(t) = Y7 (t)e;
for smooth functions Y?: (—¢, +¢) — R. For X = X‘0; we then have
VxY = (VxY)e; = > X' (9;Y7)e;
which is similar to the naive formula for the connection from above.

Remark 4. We have seen that a covariant derivatives induce a parallel transport along curves. In fact, the
converse also holds.

In general, the parallel transport depends strongly upon the curve . Thus if ¥ is another curve from
~v(0) to (1), the parallel transport along 7 is different from that along ~.

1.8 Riemannian metrics

Suppose we are given a fiber wise inner product (—, —) on V. That is, let (—, —) be a smooth map V&V — R
that restricts on every fiber V., x € M, to an inner product (—, —)z: Vz x V; = R.
If V| = U x RF is a trivialization of V, then we get a map

U — RFXF

which associates to every x € U the matrix representing the inner product (—, —), for the basis (eq,...,ex)
of R¥. Using a partition of unity one sees that every vector bundle admits such a inner product. The set of
all such inner products is convex. An inner product on the tangent bundle TM — M is called a Riemannian
metric.

Definition 5. A covariant derivative V on 'V is compatible with the inner product (—, —) if parallel transport
along every curve v: [a,b] — M preserves the inner product. That is, for all parallel sections Y1,Ys of V we
require that

(M1(t),Y2(t)) = (Y1(a), Y2(a)) Vi € [a,b].

Proposition 6. A covariant derivative is compatible with (—, —) precisely when
Vx(Y1,Ys) = (VxY1,Y2) + (Y1, VxY2)
for all X € C*(TM), Y1,Y, € C=(V).
Recall here that we use the notation Vx f = X(f) for functions f € C°°(M).

Proof. See exercise sheet 1. O



Theorem 7. Let (M, g) be a Riemannian manifold. Then there is a unique connection V on TM compatible
with g which in addition is symmetric (or torsion-free). This means that

VxY —VyX =[X,Y] VXY € C™(TM).
This connection is called the Levi-Civita connection on (M, g).

Here, [X,Y] is the commutator of vector fields X, Y. Identifying vector fields with derivations C*(M) —
C> (M), the commutator is given by the derivation

(X, Y]f = X(Y(f)) = Y(X([))
In local coordinates,
(XY —YX)(f) = X"0:(Y?0;f) — YI0;(X"O; f)
= XY 0YI0;f +Y70,0;f) — Y (9, X0 f + X'0;0;f)
= (X'0;,Y79; —Y70;X'0;) f

Here we have used the commutativity of partial derivatives. This computation gives a formula for the
commutator in local coordinates.

Proof of Theorem [7] Compare with [Roe|. Letting g;i = (9;, k), the compatibility of V with g gives

Digjn =Y _T%9ak + T gaj (2)
a
and by permuting (i, j, k) we get
0jgrki = Z Ik9ai + T5i9ak (3)
Ongij = ZFZigaj + % 9ai (4)

The symmetry of V simply means I'{; = I'};. By calculating +— we get
o 1
Zgakrij =3 (0igjk + Ojgri — Okgij)

Since at every point ge is an invertible matrix, we see that I'{; is uniquely determined by g. Conversely,
this equation may used as a definition which has the required properties. O

1.9 Curvature

Definition 8. Let V be a connection on V. — M. For XY € C°(TM) and Z € C*(V) we define the
curvature transformation by

K(X,Y)Z =Vx(VyZ) - Vy(VxZ) - Vixyv|Z.

It may be viewed as a map
C®(TM)®C>®(TM)®C*(V) = C>®(V).

Note that V|x y;Z = 0 for coordinate vector fields X = 8;,Y = 9;.

Proposition 9. K is a tensorial in all of its three arguments. That is,

K(fX,Y)Z=K(X,fY)Z=K(X,Y)fZ = fK(X,Y)Z.



Proof. For example, using [fX,Y] = f[X,Y] — Y (f)X we have

K(fX,Y)Z =VixVyZ —VyVixZ —Vixy1Z
= [VxVyZ — fVyVxZ - Vy(f)VxZ — fVixy1Z +Vy(f)VxZ
= fK(X,Y)Z. O
Moreover, K(X,Y) is antisymmetric in X,Y. Hence we may view K as an element K € Q?(End(V)).

Remark 10. For a finite-dimensional vector space V', the exterior power A™V™ may be identified with the
space of antisymmetric maps VE™ — R. This identification is given by

LA Ao = Y 580(0) (1) ® .. ® Po(m),

where we sum over the symmetric group on m letters. Here, Y51y @ ... @ Yo(m) s the map that takes
V1@ @ U 10 1) (V1) - Po(m)(Um). Note also that some authors use a different convention, where a
factor 1/m! is introduced.

We return now to a Riemannian manifold (1, g) with its Levi-Civita connection. We then write R = K.
Let (e1,...,en) be local frame for (T'M, g). Then we may introduce functions (R;;;) by the requirement

R(ej,er)e; = Z Rlijkei.

For the Levi-Civita connection, the transformation R has a number of symmetries (whose verification is a
tedious calculation):

R(X,)Y)Z+R(Y,X)Z =0
RX,Y)Z+R(Y,Z)X + R(Z,X)Y =0 First Bianchi Identity

(R(X,Y)Z, W)+ (R(X,Y)W, Z) = 0

(R(X,Y)Z,W) — (R(Z,W)X,Y) =0

We may also view R as a 4-tensor g(R(X,Y)Z, W). It has the components

Rijk = gisRjj, = g(R(ej, ex)er, ei) = g(R(es, er)ex, ;).

1.10 Ricci and scalar curvature
Using the curvature tensor we may form the Ricci curvature
Ric(Y,Z) =tr(X — R(X,Y)Z2),
which is symmetric in Y, Z by the last equation in . The components of Ric are
Ricg, = Ric(eq, ep) = R,

This (2,0)-tensor may also be viewed as an endomorphism Rc: TM — TM, determined by the formula
(here we use the non-degeneracy of the metric g)

Ric(X,Y) = g(X,Re(Y)).

In components, R¢? = g% Ricj,, where (g'7) denotes the inverse of the matrix (g;;). The scalar curvature
k: M — R is defined by taking the trace again:

# = scal, = tr(Re) = Ref = g*Ricgy,

Sometimes we write scal, instead of £ (which is preferred by Roe).



1.11 Normal coordinates
Let (M, g) be a Riemannian manifold with Levi-Civita connection V.

Definition 11. A curve 7: [a,b] — M is called a geodesic if the acceleration Viy = 0 vanishes, where the
velocity 4 is viewed as a vector field along ~y.

Using the compatibility of V with g we see that

d
Aoy o
dtg(v,v) 9(V9,%)

Hence the velocity of a geodesic ||| is constant. In local coordinates, v = (v1,...,7™) and the defining

condition for a geodesic becomes
0= Vi =40; + 4 Vs:0,0; = (3* + 4'47T3;)0
This leads to the geodesic equations
4451 =0 (k=1,...,n).
From the theory of ODEs of second order we obtain:

Theorem 12. Through every point p € M there exists a um’qucﬂ geodesic y: (—e,e) = M, v(0) = p, with
given velocity vector 4(0) = v € T, M.

Using geodesics we may form the exponential map in Riemannian geometry:
exp: U — M, v = 7, (1)

is defined in some neighborhood U C T, M of 0. Here +y, denotes the unique geodesic with v(0) = p,4(0) = v.
This defines a smooth map and the differential of exp at 0 is the identity map (see the exercise sheet)

To(T,M) = T,M — T,M.

By the Inverse Function Theorem, shrinking if necessary the neighborhood U, we obtain a diffeomorphism
exp: U — exp(U) onto its open image exp(U) C M.

By choosing of an orthonormal basis ey in T, M we may view U as an open subset of R". Thus exp™
gives us a local chart on exp(U) C M and correspondingly normal coordinates (z*,...,x") based at p on
M. The correspondence is given by

1

Us(zh,...,2") = exp(zle; + -+ znen) € M.
Clearly, we have g¢;;(p) = ¢;; for normal coordinates based at p.
Proposition 13. In normal coordinates based at p, all the Christoffel symbols Ffj (p) = 0 vanish at p.

Proof. We first observe that -, : t — exp(tv) for v € R™ represents a geodesic through p in normal coordinates
based at p, so that V;4(0) = 0. This follows because ¢, (s) = 7, (ts) on behalf of the uniqueness of geodesics.
We then get

0= Vai_;_aj (81 + 8]) =V,;0; + Vjaj + 2V183 = 2V18J L]

Remark 14. 1. On a Riemannian manifold, we may introduce the distance
d(p, q) = inf{length(y) | v: [0,1] = M,7(0) = p,¥(1) = q}.

This defines a metric d on M.

IMore precisely, a unique germ of a geodesic

10



2. For any p € M we find € > 0 so that any q with d(p,q) < € may be joined to p by a unique constant
speed geodesic 7y of constant velocity ||| (here we have used that V is symmetric).

3. In normal coordinates, the ball of radius € in U C T, M corresponds to the d-ball of radius € in M.
4. The Theorem of Hopf-Rinow asserts that (M,d) is a complete metric space precisely when any two

points p,q on M may be joined by a geodesic (geodesic completeness).

1.12 Families of geodesics and Jacobi fields

Consider a smooth map ¢: R? D U — M. We will use the notation

0 P
Byp = a—f(s,t), By = a—f(s,t).

This defines two vector fields along ¢. For instance, 0sp(s,t) € Ty s,,)M is the velocity at s of the curve
©(s,t), where ¢ is being held fixed. Since V is symmetric, we have (see exercise sheet 2)

vtﬁs@ = vsaﬁo' (6)
Suppose all p(s, —) are geodiscs. The variational vector field or the Jacobi field is then defined by

0

s=0

90(_7 t) = as@(oﬂ t)

It is a vector field along y(t) = ¢(0,t). Using (6) and the definition of R we find
ViVidsp = ViVsOp = Vs Vi0pp + R(Opp, 050)Orp
By evaluating this expression at s = 0 one gets the following:
Proposition 15. Suppose every o(s, —) is a geodesic. Then we have the Jacobi equation

ViJ = R(%,J)5.

1.13 Geometric interpretation of curvature via Taylor expansion of the metric

Proposition 16. Let (z',...,2™) be normal coordinates based at p € M. Near p we then have an expansion

1
9ij = 0ij + ngijﬂkﬂﬁl +O(||=[), (7)
where Ry s the Riemannian curvature tensor at the point p.

Proof. We perform all calculations on U C T, M = R™ on which the exponential map is a diffeomorphism.
In particular, g denotes the Riemannian metric on U induced by the given Riemannian metric ¢ on M and
the exponential map and V denotes the induced covariant derivative on TU.

For a € Ty(U) = T, M with ||| = 1 we have a geodesic 7, : t — ta of unit speed in (U, g).

Using a vector 8 € Tp(U) we may form the family of geodesics

o(s,t) = (a+sp)t.

The Jacobi field is given by J(t) = ¢t/ along v, (we identify T}, (U) = T, M for all t). Let f(t) = g1a(t3,t8),
where g denotes the metric g at the point ta € U C T, M.

11



We calculate

f(0)=0
f(t) = 0ug(J, J) = 29(VJ, J)
f(0)=0
() =2g(V2 T, J) 4+ 29(VJ, Vi J)
1(0) = 2g0(8, B)
() = 2g(V3T, J) + 69(ViJ, ViJ)
£(0) = 6g(R(e, J)ev, Vi J ) |t=0 = 0
() =2 (V4J J) +8g(V3J,ViJ) + 69(ViJ, Vi)
17"(0) = 8go(R(ev, B)ev, B).

In the fifth line we use that by definition V;J(0) = 3, because all Christoffel symbols vanish at 0 € U for
, X

the normal coordinates (z?, ™). In the last line we use the fact that

Vi(ViD)li=o = Vi(R(Yas J () Fa)li=0 = Ve(R(a, J)a)|i=o = R(a, Vi J|i=o)a = R(a, f)a
where in the first equation we use the Jacobi equation and in the third equation we use the following
calculation: Consider ¢ — R(c, —)a as an endomorphism A along 7,. In our local coordinates it is given
by a time dependent matrix AJ(¢) so that A(¢)(8;) = A (t)0;. Let J(t) = J'(¢)9; = t3'0;, where we've set
B = %0;. Then
VT ON 09;) = (T ON(E) + TN 0)8; + (DN (0)V:;.
Evaluation at t = 0 and using that J(0) = 0 (hence J%(0) = 0 for all i) then gives

V(S (N (£)0))]i=0 = (J)'(0)X(0)0; = B'A(0)(0;) = A(0)(8'9;) = A(0)(B)

which is our assertion.
Altogether we obtain the expansion

9(8.8)010) = 10 = g8, 8) + L go(R(a. B)a,8) +0(7)

for t — 0. We have o
90(B,B) = 571;‘525]-
In order to establish equality (7) at a point ¢ = (%) € U of small norm, we take the vector o = 20,
with ¢ chosen so that o has unit norm. Then

t? 1 , .
ggo(R(a,B)a,B) = ggo(R(wkamﬁlai)xlal,ﬂjaj)
1 .
= ngiﬂxkxlﬁzﬁj.
Here Ry;;i are the components of the curvature operator of g at p in the coordinates (z!,...,2™). We hence

get the expansion

o 1 o
9ij(@)B' B = 0:;8' 6" + ngijz(p)ﬂ?kﬂflﬂlﬁ] +O(||[?)
for x — 0 and for all vectors 3 = 39; € T, M. From polarization we deduce
1
Gij = 035 + ngijlkal + O(qug)
as required.
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We will use this expansion in order to obtain an expansion of the volume density \/det(g) around p.
First, using the formula
det(exp(A)) = exp(tr(A))

for any A € R™"*™ and writing
g9 = exp(C) + O([|«]?)

where Cj; = %Rkiﬂxkxl we obtain
1., 1.
det(g) = exp(tr(C))+O([|z[*) = 1+tr(C)+O(|Jz||*) = 1+§5”sz‘jzkal+0(||$||3) = 1—§Rl%zfckwl+0(|lx||3)-

Here Ricy; are the components of the Ricci tensor at p in normal coordinates (x!,...,2"). The Taylor
expansion

VI=14 5= 1)+ 0y~ 1P)

for y — 1 now leads to the expansion
1
det(g) =1 — éRickakxl +O(||lz|*)

of the volume densitiy around p. This gives a very nice geometric interpretation of the Ricci tensor: Up to
a multiple it can be identified with the Hessian of the volume density around p in normal coordinates.

Theorem 17. Let w,, denote the volume of the unit ball in Euclidean space R™. Let (M, g) be a Riemannian
manifold and let p € M. For the volume of the ball B,.(p) of radius r around p (with respect to the Riemannian
metric g) we have the expansion

vol(B,.(p)) = wpr™ <1 — ;EZIZ_(];)) r?+ 0(7"4))

forr —0.
Hence the scalar curvature measures the asymptotic volume growth of small balls around p.

Proof. We have

vol(5, (1)) = [

B, (0)C(Tp M, gp)

1
v/ det(g)dvol = / (1- ERicklajkxl + O(||z||*))dvol

B-(0)

Note that B,(0) is the ball of radius r measured with respect to the metric g, on T, M, because this is sent
to the ball B, (p) under the exponential map. After choice of an orthonormal basis with respect to g, we
identify T, M with R™ equipped with the standard Euclidean scalar product. In the above formula, dvol
denotes the standard measure on T, M = R™ with respect to the Euclidean metric.

Let do denote the standard volume element of the unit sphere S?~! in R™ with respect to the Euclidean

metric. First, for k # [ we get
/ zFeldo =0
Sn—1

by the change of variables formula for z* — —z*. Recall that the superscripts k and [ are just indices,

not exponents. The same argument shows that the expansion appearing in Theorem |17] contains only even

powers of r.
/ (z%)%do :/ (z7)2do
Sn—l S‘n,—l

For 1 <14,7 <n we get

so that



Summarizing we have

/ zFzldvol = 6y / / (rz)*(rz)lv" tdodr
B,.(0) 0 Jsn-1

,r.n+2
= 5kl . xkxldo
n 4+ 2 Sn—1

Wn,
n_ 2,
n+2

= Op -

This yields the formula

1
/ Ricy; - 2"zl dvol = w, scal(p) P2
B,-(0) n 4+ 2

implying the claim of Theorem [I7]. O

2 Dirac bundles and Dirac operators

2.1 The Clifford Algebra

As a motivating example assume that S is a (real or complex) vector space together with a collection of
linear maps Ji,...,J, : S — S satisfying the following identities:

o J2 = —Idg for all 4,
o JiJ; =—J;J; forallei#j .

In this case we define the Dirac operator D : C*°(R"™,S) — C*(R",S) (where C*°(R",S) is the space of
smooth functions R™ — S) by

- 0
D(f) := Jio—.
This is a linear differential operator whose square is equal to the Laplace operator:

9 n 82
D*=A= 2 a2
It was found by Paul Dirac (1928) in his description of the quantum mechanical behavior of fermions. Lorentz
invariance forces the relevant differential operator to be of first order.
Spin geometry arises out of the attempt to replace R™ by an arbitrary Riemannian manifold (M, g) and
hence to define the Dirac operator in a coordinate independent way.

Definition 18. Let (V,(—,—)) be a Euclidean vector space of dimension n. The Clifford algebra CL(V) is
defined as the quotient of the free temnsor algebra

ClV) = év@r / I

r=0
modulo the ideal I generated by all elements of the form v @ v + |[v]|?> forv e V.

This is an algebra with unit element 1 € R = ®O V and it contains V = ®1 V' as a linear subspace.
Elements in the Clifford algebra are finite linear combinations of monomials vyvy ... v, (r € N) subject to
the relations

] ViVj = —V;; if v; 1 Vj,

o v} = —uil®.

Example 19. There are isomorphisms of R-algebras C1(1) = C and C1(2) = H.
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2.2 Relation to the Exterior Algebra
Recall that an element of the exterior algebra A*V may be written as a sum of elements
[ I ANAN Vs v; € V,r € N.

More formally, A*V = T'V/J is the quotient of the tensor algebra TV = @, ., V®" modulo the ideal J
generated by elements of the form v ® v for v € V. We will compare the vector space C1(V') with A*(V) via
the map

1
A ARV S CUV), v AL A o ngn(a)va(l) (- (8)

Proposition 20. The maps define an isomorphism A: A*(V') — CI(V') of vector spaces (not of algebras).

Proof. Consider the canonical projection

T PV = )

r>0
and let C1®(V) =7 (@fzo V®T> C CI(V). For each k we have an induced map

AWV = AP/ CI* VW), vy A A v

which is induced by and clearly surjective. Hence the map A*(V) — CI(V) is also surjective.

We shall prove that dim C1(V)) = 2", which will then complete the proof, as dim A*(V) = 2™ as well.
Recall that a Z/2-graded algebra is an algebra C with a decomposition C' = CY @ C! with C*C7 C C*H,
taking indices mod two. It is called graded commutative if xy = (—1)¥yx whenever z € Ct,y € C?. Given
two graded commutative algebras C = C° @ C', D = D° @ D', their graded tensor product is again graded
by

(Ce&D)? = (C°® D)@ (C' ® D)
(C&D)' = (C'© D) & (C° @ DY)

The multiplication on C®D is given by
(1 @ dy)(c @ dp) = (=1)1"11%2 N (c100) @ (dyd)

and is also graded commutative.
An important example is the Clifford algebra, which is graded commutative, where we set

ca’(V)y=x | PV |, a'(v)=x|Pvet!
r>0 r>0

Alternatively, consider a: V' — V,«(v) = —v. Then « induces a map Cl(V) — CI(V) since a(v) - a(v) =
v-v = —|v|?. Then C1°(V) is the (+1)-eigenspace and C1'(V') is the (—1)-eigenspace of this map. Sometimes
we call C1°(V) the even part of C1(V) and C1'(V) the odd part of C1(V). Note that the even part forms a
subalgebra of C1(V'), but not the odd part.

Now if V' is the orthogonal direct sum of V; and V5, then we have

Cl(V) = Cl(V1)@ CL(Vs).
For the proof, we define two homomorphisms inverse to each other. First,

V:‘/]EB‘/Q_)CI(Vl)@Cl(‘/Q), (vl,vg)n—>vl®1+1®v2
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induces an algebra map f: Cl(V) — CL(V;)@Cl(Va) because (v; ® 1 + 1 ® v2)? = —||v1]|? — ||v2* =

—[(v1,v2) I
The map g: ClI(V;)® Cl(Vz) — CI(V) is induced by the bilinear map

Cl(V1) x Cl(Vz) = CI(V), (z,y)—x-y

where we view z € C1(V) by the canonical map Cl(V;) — Cl(V) induced by the inclusion V; — V — Cl(V)
and similarly for y.
It is a straightforward calculation that f and g are indeed inverse to each other.
Since CI(R) = C and since we may orthogonally decompose V' = V4 @ --- @ V,, into 1-dimensional
subspaces, it follows that
ClV) =CL(V}))® - @ CY(V4,), (9)

which has dimension 2. O
From @D we also see the following:

Proposition 21. Let (v1,...,v,) be a basis of V. Then the elements

fUil...

(N h < <ig 0<k<dmV

form a basis of CI(V'). Hence dimg CI(V') = 2".

For v € V' we define the contraction by v as
k
to: APV S5 ARV o A Ay Z(—l)“‘l(v,vi)vl AN AU A - AU
i=1

Roe considers the closely related operator vi— := —¢,. The contraction has the following properties:
1. tytyw = 0. It follows from the universal property that ¢ induces a map A*(V) x A*(V) — A*(V).

2. Under the canonical isomorphism A(V) = A(V*) (given by taking the k-th exterior power of the map
V2 V* v~ (v,—)) the contraction corresponds to the map

vo: AR (V) = AR V),
(lﬂuw)(Xl, o ,Xk) = w(v, Xl, e ,Xk)

Again, notice that working with Roe’s operator we have (vow) = —w(v, X1,..., Xj)

Proposition 22. Under the isomorphism A: A*V — CI(V') of vector spaces defined above, the multiplication
on CI(V) corresponds to the product

ANV)x A (V) = A" (V), (w)—ovAw—t,w=0vAw+vw.

Proof. Fix v € V and extend v = v; to an orthonormal basis (v,va,...,v,). Suppose w = v;; A -+ A v;,.
Then in the Clifford algebra we have

V10, -V, = AV A w) i1 >1
vy Ao A ) = =AMew) 4 =1,

)\(v))\(w) = VU4, V5, = {

This equals A(v A w — t,w) in both cases. O
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2.3 Hodge Star Operator
Let (v1,...,v,) be a positively ordered orthonormal basis of V. The volume element is defined by
vol=v1 A+ Av, € A™(V).

The inner product of V is extended to A*V by declaring v;, A ... A v;, to be an orthonormal basis of
ARV,

Definition 23. The Hodge star operator x: A*V — A" =FV is defined by the relation
(o, B)jvol = BAxae VB e A*V.
In particular, *(vy A -+ Avg) = Vg1 A -+ Av,. A useful formula is
*(Vi, Ao A ) = Fu5 A AL

where the j’s are chosen so that (i1,... ik, J1,- .., jn—k) is @ permutation of (1,...,n) and the sign is chosen
according to the parity of this permutation.

Lemma 24. vaw = (—1)"" 7+ s (v A xw) for w € A¥V. In this sense the contraction is dual to the wedge
product.
2.4 Clifford Modules

Definition 25. A real (resp. complex) Clifford module for CI(V) is a real (resp. complex) vector space S
together with an R-algebra map
p: CI(V) — Hom(S, 5).

(more precisely, Homg(S,S) resp. Home(S,S)) Equivalently this is given by an R-linear map ¢ : V —
Hom(S, S) such that c(v)? = —|jv||? - ids.

Example 26. In the situation at the beginning of this section we can regard S as a Clifford module for
Cl(n) by setting e; — J; for the standard orthonormal basis (e1,...,e,) of R™ and extending this map to an
algebra map CI(R™) — Hom(S,S). More generally, for a finite-dimensional Euclidean vector space V' and
any choice of orthonormal basis (v1,...,v,) of V the Dirac operator on C*(V,S) is given by

=1

where, as usual, 0; = % is the derivative in the direction v;.
This is hence a description of the Dirac operator which is independent of the choice of an orthonormal
basis of V: suppose w; = ¢7*v; for (¢°*) € O(n). Then

9 . 9
ija—%:;gﬂ UigjkaT%:Z”iaTji

, Gk ik
since ), g7t g7 = 6.
In this lectures, we will usually restrict our attention to complex Clifford modules S.

Example 27. S = CI(V) is itself a Clifford module, where the module structure is given by multiplication
in the Clifford algebra, i.e. by C1(S) x S —= S, (v,w) — v - w.
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Now let (M, g) be a Riemannian manifold. Because each fibre T, M of the tangent bundle is a Euclidean
vector space, we can form its Clifford algebra Cl(Z7,M). This construction can be carried out on local
trivializations of TM and hence yields a vector bundle CI(TM) — M of dimension 2. This bundle is a
bundle of algebras in the sense that we have a smooth map

CYTM) @& CTM) — C{TM)

which restricts to Clifford multiplication in each fibre. We call the bundle CI(TM) — M the bundle of
Clifford algebras associated to TM — M.

In the following we use the notion Hermitian bundle for a complex vector bundle V' — M which is
equipped with a fiber wise Hermitian inner product (—,—). We also could call these bundles complex
bundles with inner product. A compatible connection is a connection V on V which is compatible with the
Hermitian structure in the sense of Definition [5} respectively Proposition [6}

Definition 28. Let M be a Riemannian manifold. A bundle of Clifford modules or Clifford-module bundle
or briefly Clifford bundle for CI(TM) is a Hermitian vector bundle S — M together with a smooth bundle
map

CiTM)® S — S (10)

with the following properties:
1. The map restricts to a Clifford module structure CY(T,M) x S, — S, on each fiber over p € M.

2. Clifford multiplication is compatible with the Hermitian structure on S: If v € C°(TM) is a (local)
section of constant length 1, then

(vs1,v82) = (81, 82) Vs1,s52 € C(9).

Note that this is equivalent (using the relation v? = —||v||? in CI(V')), that Clifford multiplication with
tangent vectors is skew adjoint (this is the condition given by Roe):

(vs1, $2) + (s1,v82) =0 Yo e C®(TM),s1,s2 € C(S).

We remark that any complex bundle S — M with a fiber wise Clifford-module structure can be equipped
with a Hermitian inner product so that the second condition above is satisfied, cf. Exercise 4 on Exercise
sheet 3. There is an analogous notion of real Clifford-bundles, but this will be less important for us.

Definition 29. Let M be a Riemannian manifold. A Dirac bundle is a Clifford module bundle S — M
together with a connection V° on S which is compatible with the Hermitian structure and with the Clifford
module structure in the sense that

V3 (vs) = VEC(v) - s + V5 (s)
for all X,v € C=(TM), s € C*(S) using the Levi-Civita connection V*C on TM.

Remark 30. What we call Dirac bundle is called Clifford bundle by Roe. We find the above notions less
confusing.

Definition 31. Let S be Dirac bundle on a Riemannian manifold M. Then the corresponding Dirac operator
is the composition

D: C®(S) Y5 C®(T*"M ® §) = C™(TM ® §) — C>(S)

In terms of a local orthonormal frame (v;) of TM this may be rewritten as

Ds = Zvi -V, 8,

similar as before (note that the Hermitian metric plays no role in this definition).
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2.5 The Laplacian on Manifolds

Definition 32. Let E — M be a vector bundle with connection V. The second covariant derivative of
s€ C®(E) is
Vi (5) = VxVy(s) = Vv ().

The second term has been inserted to make this a tensor in both X and Y. Given an inner product on T M
(i.e. a Riemannian metric on M ), the connection Laplacian is

A(s) = =3 Verails) (1)

for a local orthonormal frame (e;) of TM. It may be regarded as a map A: C®(E) — C*(E).

Note that this is the usual Laplace operator on C*°(R"™) when M := R" is equipped with the standard

Euclidean structure and smooth functions on M are regarded as sections in the trivial bundle £ = M xR —
M.

Theorem 33 (Weitzenbock Formula). Let S — M be a Dirac bundle. Then we have
D?(s) = A(s) + K(s), Vs € C(S5),

where K € C*°(End(S)) is the endomorphism of S given by K(s) =Y
K% of S.

i<j €i€j -K5(e;,e;)(s) for the curvature

Note that A and D? are differential operators of second order, while K is an endomorphism of S (a
differential operator of Oth order). The Weitzenbéck formula says that the Dirac operator squares to the
Laplacian, up to an operator of order 0 (i.e. up to a section in the endomorphism bundle of S), which is
related to the curvature of the connection V° on S.

Proof. Choose an orthonormal frame (e;) of TM around p € M such that for all ¢, 7 we have
Ve, (ej)(p) =0

at p (one says the frame is synchronous in p). This can be done by parallel extending an orthonormal basis
of T, M along radial geodesics starting at p. We compute in the point p € M:

DX(s)(p) = 33 Ve, (€:Ve,(s))
= Z e;jeiVe, Ve, ()
= =2 Vi) + 3 esei(Ve,Ver = Ve Ve, ) () = Als)(p) + K (5)(p)

where we have used [e;, €;](p) = Ve,e5 — Ve e, =0 at p. O

2.6 The Bundle of Exterior Forms as a Dirac Bundle

Let S =Cl(TM)® C — M. This is a complex Clifford module in an obvious way. Recall that a connection
may be defined by specifying which frames are parallel along a given curve . Let (eq,...,e,) be a parallel
orthonormal frame of TM along . We then define the connection (and the Hermitian metric) on S by
declaring the frame

(€i - €iy )1<ir<ip<n,  0<k<n,

to be a parallel orthonormal frame of S along ~.
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We prove (vs1,vs2) = ($1,82). For this, extend e; = v to an orthonormal frame (eq,...,e,). Then by
considering cases one immediately checks

(veil,u-,ik ’ Uejl’m,jk) = (eihm,ik ’ €j1’~~~s.jk)'

The compatibility of the Clifford multiplication with the connection follows from the Leibniz rule (when
working in a parallel frame).

We wish to explicitly identify D and K. Recall that C1(V) 2 A*V, where v - w = v Aw — t,w. Therefore
S 2 ANTM®C =2 A*(T*M) ® C identifies with the bundle of differential forms. To identify the Dirac
operator D we begin with the following lemma:

Lemma 34. Let (¢') be the frame dual to some orthonormal frame (e;). For w € C(AFT* M) we have

dw = iei AVe,w

i=1
n
ow = Z €;1Ve,w
i=1
Proof. Tt is easy to see that if this formula holds in one orthonormal frame, it holds in any. Let (z%,...,2")
be normal coordinates in p. The coordinate vector fields (9, ...,0,) then give an orthonormal basis at p.

Using these, we shall prove that the above formula holds in p. Let w = >, wrda!. Then since V,0; = 0 we
have at p

" ) n )
dw(p) = E %dw’ Adx! = E dz' A\ Vo,w,
i=1 " i=1

as required. Recall that the codifferential of a k-form w € Q¥(M) is defined by
S(w) = d*(w) = (1) s d(xw) € QFH(M). (12)

(the operator d* may be viewed as the adjoint of d for the L? inner product on Q*(M) we will consider later)
The second formula now follows from Lemma 24}

d*w = (—1)nk+ntl Z (e; A Ve, (xw)) = (—1)nk+ntl Z x(e; N *Ve, (w))
= €Vew O
It follows that
Dw = Zei Ve,w= Zsi/\veiw—i—Zeuveiw =dw + d*w, (13)
which is called the de Rham operator of M. The corresponding connection Laplacian
D? = (d+d*)? = dd* +d*d
is called the Hodge Laplacian of M. In this case the Weitzenbock formula D? = A+ K contains the operator

K(ex) = Z eiejR(e;, ej)ex

i<j
1 1
=3 E eiejel(R(e;, ej)ex, e) = 3 E eiejerRigij.
,7,1 1,5,1

for the curvature R of the Levi-Civita connection on M. If 4, j, [ are distinct, by the Bianchi identity we have

eiejel = ejeie; = ejeie;, Ririj + Rirji + Rjkii = 0.
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All such summands add up to zero. If ¢ = j we have Rj;; = 0, if i # [ = j we have
1 1 .
5 Z —eiRjkij = 5 Z eiRICki.
i, i

Finally, for i = [ # j we have

% Z ejRikij = % Z ejRiij.

K(ex) = ZRicakea = Re(ex)

Therefore

is the Ricci transformation. Hence
D? = A +Re.

For M closed oriented with dim H'(M;R) # 0 this may be used to deduce that M does not admit a
metric of positive Ricci curvature (meaning that Ric is positive definite at every point). This argument will
be made more precise later in these lectures.

3 Spin Structures on Manifolds

3.1 Constructing Clifford Bundles as Associated Bundles

Let M be an oriented Riemannian manifold of dimension n.

In the following we will discuss a general method to construct Clifford and Dirac bundles on M. Let W be
some (complex) Clifford representation for Cl(n), equipped with a compatible (Hermitian) inner product (i.e.
vectors of length one act as isometries, or equivalently that Clifford multiplication is skew adjoint). At first
we would like to construct a Clifford bundle E — M whose fibers E,, are isomorphic to W as Cl(n)-modules.

Let (U;)icr be an open cover of M, which is trivializing for TM. Choose orthogonal trivializations
¢i : TM|y, = U; x R™ with induced transition maps ¢; o qb;l that may be regarded as maps

¢ji: U, N Uj — SO(n)

We wish to define the bundle E — M of Clifford modules by writing down trivial bundles U; x W and
choosing suitable transition maps ¢;; : U; N U; — Aut(W). The bundle E is then obtained by gluing the
trivial bundles U; x W using the transition functions:

E= (U(U’ X W))/ ~ where ((z,w) € U; x W) ~ ((z, (¢ji)e(w)) € U; x W)

i
These need to satisfy the following requirements:

e To get a well defined Clifford multiplication on the fibers of the resulting bundle, the transition maps
¢;; need to be compatible with 1);; in the following way:

(@5i)a (V) - (ji)a(w) = (ji)a(vw)
Forallz €e U;NUj, allv € R” and w € W.
e They must fulfill the cocycle condition
Yri = Yrj oYy - Uy N U; N U — Aut(W)
for all i, 7,k € I with U; nU; N Uy, # 0.

Each v € R™ of norm one induces an isometry of W by w + v-w. We would like to use such isomorphisms
to define the maps ;. To encapsulate the geometry of M these should be related to the SO(n)-valued
transition functions ¢;;.
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3.2 The Pin and Spin Group
Let (V,(—,—)) be a Euclidean vector space. We will be mostly interested in the case V = R™.

Definition 35. The subgroup Pin(V') of the multiplicative group CL(V)* of invertible elements is generated
by all v € V with ||v|| = 1. An element thus has the form

vy - U, where ||v;]| =1, ke€N.
The Spin subgroup Spin(V') C Pin(V) is the set
Spin(V) = {vy ---vx € Pin(V) | k even} = {v € Pin(V) | a(v) = v} = Pin(V) N C1°(V) c CI°(V).

Here we recall that « : CI(V) — CI(V) is the algebra automorphism induced by V. — V, v — —uv. For
any v € V of unit length consider the map

pv: CI(V) = CUV), s —vav ! =a(v)zv™t

This formula makes sense for any v € C1(V)*, i.e. we have a map Cl(V)* — Aut(CL(V)).

Lemma 36. We have p,(V) C V. In fact, p,|v is the reflection across the hyperplane v

[[o]] = 1.

orthogonal to

Proof. If x = Av, then p,(z) = —Av. On the other hand, if 2 Lv, then p,(z) = —vzv~! = zvv~! = 2. This
proves that p,|y is a reflection across v*. The first claim follows immediately. O

It follows that p, determines a group homomorphism
p: Pin(V) — O(V)
and by restriction we get a homomorphism
p: Spin(V) — SO(V).

Proposition 37. The kernel of p: Pin(V) — O(V) is {£1}. Likewise, the kernel of p: Spin(V) — SO(V)
is {£1}.
Proof. Let (eq,...,e,) be an orthonormal basis of V' and suppose that v = vy - - - v € ker(p). We may write

vV=0qp+erol.

where o, o are polynomials in e, ..., e,. Suppose v € C1° (V). Then ag € CIO(V) and oy € C1'(V). Using
the assumption v € ker(p) we get ve; = e1v so

e10g — ap = ape; +ejaie; = ejag + o

Hence a3 = 0 and v itself is a polynomial in eg,...,e,. Proceeding by induction, we see that v does not
contain any of eq, ..., e, and hence v = +1.
Suppose on the other hand that v € CI' (V). Then ve; = —e;v by assumption and we have o € Cll(V)7
o1 € CI°(V). Then as above we get
€100 — (1 = €14 —+ a7

so that a7 and we proceed again as above to see v = 0. It follows that this case does not occur. O

Since every element of O(n) may be written as a product of n reflections (this is proven by diagonalizing
an orthogonal matrix over C to put it into block diagonal form), the maps p are surjective. These arguments
together with the previous proposition give:
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Corollary 38. Pin(V) ={vy---vx | k < n,|v| =1}.
Proposition 39. The groups Pin(n) and Spin(n) are compact Lie groups.

Proof. The subset C1*(n) of multiplicatively invertible elements in Cl(n) is an open subset of the finite-
dimensional vector space Cl(n) = R?". Because the product on Cl(n) is bilinear, it is smooth. The same
holds for the inversion map on C1*(n). It follows that (C1*(n),-,1) is a Lie group.

We claim that Pin(n) and Spin(n) are compact subsets of C1*(n). Because Pin(n) and Spin(n) are also
subgroups, It then follows from the Closed Subgroup Theorem from Lie group theory that these are Lie
subgroups. In particular, they are closed submanifolds of C1*(n).

For each k£ > 1 we have a continuous map

Ap: SP 7 x oo x 87 — Pin(n), (v1,...,05) — v1 - 0.

k factors

As S"71 x ... x S"71 is compact, the image of \;, is compact. By Corollary [38 Pin(n) = (J;_, im(\z), is a
finite union of compact sets and hence itself compact. An analogous argument applies to Spin(n). O

The map p: Pin(n) — O(n) is then a smooth map, being the restriction of the obviously smooth map
CI*(n) — Aut(Cl(n)), v = (z — a(v)zv™1).

Corollary 40. p: Pin(n) — O(n) and p: Spin(n) — SO(n) are two-fold smooth coverings. In particular,
dim Pin(n) = dimO(n) = n(n — 1)/2 and dim Spin(n) = dim SO(n) = n(n —1)/2.

Proof. Tt is enough to find an open neighborhood of 1 € O(n) which is evenly covered by p. By Proposition
this amounts to finding an open neighborhood U C Pin(n) of 1 € Pin(n) so that U N (—=U) = (. But
this follows easily by the continuity of the map v — —v on Pin(n). The case of Spin(n) follows immediately.
The dimension computations follow from the corresponding computations for O(n) and SO(n) (which is a
component of O(n)). O

Example 41. 1. We know that C1(1) = C. It follows that Spin(1) = {vy - - - vai | ||vi]| = 1,v € R} = {£1}
and the map Spin(1l) — SO(1) = {1} is the constant map 1.

2. Next C1(2) = H. Then Spin(2) = {vy---var | v; € R?, ||lv;|| = 1}. Consider for |a|?> + |B8]*> = 1 and
|z|? + |y|?> = 1 the expression

(i + Bj)(wi +yj) = (—ax — By) + (ay — Bx)k =: v + 11k

Then again |vo|? + |71 = 1. If we view (x,y) € R? as xi + yj we see that Spin(2) = S C C, using
the isomorphism (1, k)r = C (sending k to i). The map p: Spin(2) — SO(2) takes the following form.

(o +mk)(z1i + x25) (0 — mk) = (10 +mk)* (@1 + 225)
= (10 +mk)*(z1 + z2k)i
which shows that p: ST — S may be identified with p(z) = 2.

3. On the exercise sheet, we will see that Spin(3) = S3 so that SO(3) = RP3. In particular, 71 (SO(3)) =
Z)2.

Proposition 42. The Lie group Spin(n) is connected for n > 2 and simply-connected for n > 3.
Proof. We have the long exact sequence for a covering
0 — m (Spin(n)) = 71 (SO(n)) — mo(Z/2) — 7o(Spin(n)) = me(SO(n)) — 0
The space SO(n) is connected for all n. Moreover m1(SO(n)) = Z/2 for n > 3. For n = 3 this follows

from SO(3) = RP2. The result now follows by induction: consider the long exact sequence for the fibration
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SO(n —1) — SO(n) — S"~1. Because S"~! is simply-connected for n > 3 the result follows for SO(n) as
soon as it is known for SO(n — 1).

The map 7y(Z/2) — 7o(Spin(n)) is the constant map, because +1 and —1 in Spin(n) may be joined by the
path (cos(t)e; + sin(t)es) e for ¢ € [0, 7]. From the exact sequence it follows that w1 (SO(n)) — 7m(Z/2) is a
bijection and so the injection m (Spin(n)) — 71 (SO(n)) has zero image. It follows that 71 (Spin(n)) =0. O

Corollary 43. Forn > 3 the map p: Spin(n) — SO(n) is the universal covering of SO(n).

3.3 The Solution: Constructing Clifford module Bundles

We return to the problem of defining transition function ;;: U;; — Aut(W), where W is a Cl(n)-module,
from given ¢;;: U;; = SO(n). Let us assume that we may lift the ¢;; along our covering map p: Spin(n) —
SO(n) to maps ¢;;: U;; — Spin(n). We then attempt to define

bji(x)(w) = gji(x) - w

in terms of the Clifford multiplication Spin(n) x W — W. Then we have the compatibility

¢ji(ﬂ7)(v) ) %z(x)(w) = ngi(ﬂﬂ)v (g’ji(z))_l (Z;jz(x) ‘W= <Z~5]z(l’) VW = Z/in(l")(vw)

In order to get a well-defined vector bundle by the clutching construction, we however also need the cocycle
condition, i.e. that the map R o
Oijk = byt - Gij - bix: Uijk — Spin(n)

is always equal to one. Because our original transition functions ¢;; satisfy the cocycle condition and since
the kernel of p: Spin(n) — SO(n) is {£1} it follows that o;;; takes values in Z/2. Note that for every
x € Uj; there are two choices for éij (z), since we are lifting along a two-fold covering.

Can we modify the maps g{)z-j in a consistent way so that all o;j; become the constant map 1. This kind
of obstruction problem is described by the Cech cohomology group H?({U;};7Z/2).

Definition 44. Let X be topological space with open cover U = (U;)ier indexes over a totally ordered set I,
whose finite intersections Usjy... are all empty or contractible (a so-called good cover). Define the Cech com-
plex as follows. The group Cy,(U) is the free abelian group generated by all ordered tuples of indices (ig, . . . ,in)
with Ui, N---NU;, # (0. The differential is given on a basis by O(ig, - - - ,in) = ZZ:O(—l)k(iO,';' ,z'Ak, ce i)
The Cech co-complex with coefficients in an abelian group G is defined as C™(U; G) = Hom(C, (U); G).

We then have the following Mayer-Vietoris principle:

Proposition 45. The homology of C.(X) coincides with the singular homology of X. The cohomology of
C*(X; Q) coincides with the singular cohomology of X with coefficients in G.

For a triangulated manifold this can be made concrete in the following way: Choose a triangulation of
M™ and consider the dual cell decomposition of M (where k-cells are in one-to-one correspondence to the
(n — k)-simplices on M). Let (U;);er be the covering of M where the U; are thickenings of the top cells
in this dual decomposition. This is a good cover of M and the Cech-complex associated to this covering is
canonically isomorphic to the simplicial chain complex associated to the given triangulation. In the following
we may work with a good cover of M of this sort.

Note that for a good cover, the maps o, considered before are constant, because they are defined on
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contractible sets. The elements o = {75} € C?(U;Z/2) define a Cech cocycle, i.e. satisfy do = 1:
T kIO 11 O1510 51
Zéj_lléjk&kl(&ﬁléik&kl)_1G3i_ll<5i,j<£jl(@_kléijéjk)_l
:ég;lléjk&kl&;&légﬁclﬁgizfi;ﬁ1@@;‘&;‘1&{5&%%%
Zﬁgﬁléjk(ﬁ:éijéjlé}kléi_jl@k
:(5;11((E)jkéﬁcléij)g)jlé;quggjléik
=05 015k (Dikiy bij)biy din = 1
using that éjkqg;klvél] is central (it is &1 since it maps under ¢ to 1).
~ We obtain a Cech cohomology class [o] € H?*(M;Z/2). Suppose that [o] = 0. Then we find (\;;) €
CY({U;}; Z/2) with 6A = & (so (6A)ijx = A\jrA; Aij). Using A we now redefine
& = bji - M-

Then we get
Ohji = Ohjidg MejNji = Okji(ON)igj = 1.

The modified transition functions q%l therefore satisfy the cocycle identity.
Definition 46. The class wa(M) = [o] € H?(M;Z/2) is called the second Stiefel-Whitney class of M.

It can be shown that the class of ws(M) is independent of the choice of open cover {U;}. In summary,
we have:

Proposition 47. Let M be an oriented Riemannian manifold. Suppose wa(M) = 0. Then we may consis-
tently lift the transition functions of the tangent bundle TM to the group Spin(n). Using the Cl(n)-module
W we obtain an associated Clifford-module bundle E — M in the sense of Definition [28

(Note that if W has an invariant inner product, this induces also an inner product on the bundle F ).

It remains to define a connection on E and to understand the Cl(n)-modules W.

3.4 Interlude: Principal Bundles

We point out a more systematic view on the above construction. Let G be a Lie group.

Definition 48. A G-principal bundle is a smooth fiber bundle w: P — M with a smooth, free G-action on
P which preserves the fibers and acts fiber wise transitive on these.

Example 49. Let E — M be a rank k vector bundle. The frame bundle P(E), = {(b1,...,bx) basis of E,} =
Iso(R¥, E,), P(E) = U,ca P(E)z — M, is a GLj(R)-principal bundle. The action of GLj(R) on the fibers
Iso(R*, E,) is given by pre-composition.

Suppose the vector bundle F is trivialized on an open cover U;, so we have E|y, =2 U; x RF. Then E may
be described in terms of the transition functions

¢ji: Uiy — GLE(R).
The frame bundle P(E) may then be constructed by gluing the trivial bundles U; x GLg(R) using the maps
®ji - (—): U;j — Homeo(GLg (R), GLg(R))

that take « € U;; to the left multiplication map GLj(R) — GL;(R) by the matrix ¢;;(x).
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On the other hand, any GL(R)-principal bundle has trivializations in which the transition functions are
given by left multiplication of a certain matrix ¢;;(x). These may in turn be used to reconstruct a vector
bundle E.

The formalism of GLg(R)-principal bundles and the formalism of rank & vector bundles are therefore
equivalent points of view.

The existence of a Riemannian metric on E corresponds to a reduction of the structure group of P(FE)
to O(k). Indeed, if E has such a metric we may consider the O(k)-principal bundle Pp(FE) of orthonormal
frames. On the other hand, such O(k)-valued transition may be used to define an inner product on E by
using the standard inner product on the trivial pieces U; x R*. These then fit together since @j; is a fiber
wise isometry. An orientation on E corresponds to a reduction to SLi(R) (resp. SO(k) in the presence of
a metric). Then we restrict to positively oriented frames (resp. positively oriented orthonormal frames) to
construct principal bundles Pgy, r)(E), Pso(E).

The vector bundle E may be reconstructed as an associated bundle of P(E):

E = P(E) Xgr,® R" = (P(E) x R)/ ~
Here the equivalence relation ‘~’ is given by (pg,v) ~ (pgv) for ¢ € GLi(R). Locally, the frame bundle
reduces to U x GLi(R) and the associated bundle construction on U x GLx(R) x R* identifies (x,pA,v)
with (z, @, Av), so that the canonical map to U x R¥ = E|; is an isomorphism.
Using this language, we have shown the following in the previous section:

Proposition 50. We have wo(M) = 0 precisely when we may consistently lift the SO(n)-valued transi-
tion functions to maps éji to Spin(n). This is equivalent to the existence of a Spin(n)-principal bundle
Pspin(TM) — M along with a two-fold covering map Pespin(TM) — Pso(TM) which is equivariant for the
canonical covering map p: Spin(n) — SO(n).

In topological terms, this may be restated by saying that the classifying map f: M — BSO(n) lifts along
the map Bp: BSpin(n) — BSO(n) to M — B Spin(n). The map Bp has fiber BZ/2, which implies that
the obstruction class for such a lift is an element of H2(M;m(BZ/2)) = H*(M;Z/2). This element may be
identified with the second Stiefel-Whitney class we have constructed.

Definition 51. Let M be an oriented smooth manifold. We call M a spin manifold, if we(M) = 0.

It can be shown that if M is spin manifold, the Clifford bundle E — M from Proposition [47]is isomorphic
to the associated bundle Pspin(T'M) Xgpin(n) W, where Spin(n) acts on W by Clifford multiplication.

3.5 The Connection on the Clifford Bundle £ — M and the corresponding
Weitzenbock Formula

We want to turn the bundle E — M from Proposition [47] into a Dirac bundle. For this aim it remains to
construct a connection on £ — M compatible with the Levi-Civita connection on 7'M and the inner product
on F, compare Definition

From our construction (see Subsection [3.1)) we have simultaneous orthogonal trivializations U x R"™ 22
TM|y and U x W = E|y (where U C M is part of a fixed open cover of M used to define E — M.)

The connection is defined as follows.

Choose a curve v: (—e,e) — U through p € U and let (eq,...,e,) € T, M be the standard basis in our
trivialization. Using the Levi-Civita connection we may extend these to a parallel frame (&1(t),...,&,(¢))
along . Choose matrices A(t) € SO(n), A(0) = E,, with A(t)e; = &;(t). We wish to define the parallel
transport of w € W = E, along . For this we (uniquely) lift the map A: (—e,e) — SO(n) to a map
A: (—&,e) — Spin(n) with A(0) = 1.

Definition 52. The connection on E is defined by declaring w(t) = fl(t) -w to be a parallel section of E
along v. We say this connection VF is induced by the Levi-Civita connection.
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In local coordinates, this connection may be understood as follows (we will need this description later
when applying the Weitzenbdck formula to the present situation). Recall that the Christoffel symbols of the
Levi-Civita connection are defined by _

vIeJkC(ei) =Ty,e;.
We wish to compute VZ (w) for a ‘constant section” w € W. Choose a curve v with 7/(0) = ey.

A(t)e; = &;(t) = e; = C(t)e(t), C(t)=A@t)"".

Then
ViCeil, = Vili=o(C(t)ei(t)) = C'(0)&:(0) + C(0)Vi|e—oei = C'(0)e;

so that C’(0)! = Fii. Write
w=C(t) Alt)w
——
parallel for V¥

for the lift C' of C' to Spin(n) with C'(0) = 1. Thus
VE w|, = Vilimo (é(t)w(t)) = C'(0)w(0) = C'(0)w

where C’(0) € T} Spin(n) € C1°(n). It remains to compute T;p: Ty Spin(n) — T1S0(n), which maps C’(0)
to C’(0). Since p is a covering map, the map 77 p is an isomorphism.

The group Spin(n) C C1°(n) is a submanifold of C1°(n). Thus 7} Spin(n) may be viewed as a linear
subspace of C1°(n):

Proposition 53. The set e;ej, i < j is a basis of the vector subspace T; Spin(n) C C1°(n). We have

Tlp(eiej) =2

where +1 is placed in row j, column .

Proof. Consider the curve y(t) = cos(t) +sin(t)e;e; = (sin(t)e; —cos(t)e;)e; inside Spin(n). It represents the
tangent vector 7/(0) = e;e;. This shows that all e;e; belong to T Spin(n), which has dimension n(n — 1)/2
so we have found a basis. For x € R" we compute

d

o Py (1) ()

0 o dt

y()zy(t) "t = eie; T — Tee;
0

Clearly, e;ejx — wese; is zero for x = ey, k # 4,j. Also e;eje; — ejese; = 2¢;5 for © = e; and similarly for
T =e;j. O

We now rewrite C’(0) = (T,) = 32, T'.. Pij to conclude

i<j
1 ,
VEw= 3 E I eie;w (14)

for an orthonormal frame (e, ..., e,). We now compute the curvature. For this we work with an orthonormal
frame (eq, ..., e,) which is synchronous at p. In particular all Christoffel symbols vanish at p and at p these
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vector fields commute as [e;, e;] = V¢, e; — Ve e; vanishes at p. In such a frame, the formula for the curvature
KTM at p simplifies to K, 1ik(P) = Ve, i, — Vek % (here V just denotes directional derivatives of scalar valued
functions). At the point p we then have

(14)
2K (e, ex)(p) = VIVE ~ VEVE & 7 (VA cacs) ~ VE (T eaes))

a<f

= Z (V]Tfa — Vkl"fa) €alg = Z ngkeaeg = Z(K(ej,ek)ea,qg)eaeﬁ

a<fB a<f a<p
The third equality uses the fact that the frame (eq,...,e,) is synchronous at p.

Remark 54. It is no surprise that K¥(e;, ex) = %Za<ﬂ ngkeaeg. Let

be the matrices from Proposition [53] Then the image of this element under the isomorphism Tip is

Tlp(KE(ej7 ek Tlp Z Ka]keaeﬂ Z a]k: af = KT (ej’ ek)
a<5 a<f

Since the connection on E is induced from the bundle Pspin(T'M), as is the connection on TM, this result
can also be obtained from the general theory of connections on principal bundles.

We now examine the curvature term in the Weitzenbéck formula D? = A+K, where K (s) = D i<k € ex KE (ej,er)s,
see Theorem 33. In our case

1
Ze]ekK (ej,ex) = ZejekK (ej,ex) = 3 Z €j€k<KTM(€j,ek)€a7€ﬁ>€a€ﬁ
i<k jk‘ ka8

1 1
= gz 3 Z (K™ (ej,er)ea + K™ (e, e0)ej + KT (eq,e)er, ep)ejexeq

J,k,a distinct

+ Z KT (ej,en)ej, eg)ejepe; + Z (ej,ek)ek7eg>ejekek es
Jik,(a=j) Gk, (a= k)

Leaving 3 fixed, we have used here the anti-symmetry of K™ to reduce the three-fold sum over (j, k, o)
to the case j # k. The remaining cases (j, k, «) pairwise disjoint, j = «, and k = « were then gathered as
individual summands. The first summand consists of three equal parts. It vanishes by the Bianchi identity.
By replacing j with k£ in the last summand, we see that the last two summands are equal. The above
expression therefore reduces to (using ejerejes = ereg)

1 1 )
1 %:B<KTM(€jaek)ejaeﬁ>€k€5 = ~1 gﬁ Ric(ex, eg)eres = Zscalg'
3.k, )

Combined with Theorem B3] these calculations show:
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Theorem 55. Let (M, g) be an oriented Riemannian manifold with we(M) = 0. Let W be a Cl(n)-module
with compatible inner product and let E — M be the corresponding Dirac bundle with Dirac operator D.
Then we have

1
D*=A+ 15caly,
where scaly operates on sections by scalar multiplication.

Remark 56. The Dirac bundle CTM) = A*(TM) = A*(T*M) from Section 2.5. does not follow this
construction scheme (that started in Section 3.1). In particular, the curvature term appearing there is
different: On one forms it is given by the Ricci endomorphism and not by multiplication with the scalar
curvature function.

The following will be shown on exercise sheet 5:

Proposition 57. In even dimensions n = 2k there exists a unique Cl(n)-representation A of complex
dimension 2F.

We therefore obtain a canonical Dirac operator D on the vector bundle S = Pgpin(M) Xgpin A. This is
the Dirac operator on an even-dimensional spin manifold.

Remark 58. The construction of the associated bundle E from the last sections may be carried out as soon
as one has a Spin(n)-representation W.

3.5.1 Spinor Dirac Operator

As a Spin(n)-module the representation A splits into two irreducible parts A = Ay @A_. The representations
AL are inequivalent irreducible representation of Spin(n). There are no other irreducible representations of
Spin(n) so that —1 € Spin(n) acts as multiplication with —1, see exercise sheet 6 E|

Hence S = S, @ S_ with induced connections V°+. The Clifford multiplication with an element v € R
takes S; to S_ (and S_ to Sy). We may therefore view the Dirac operators as

D: C™(Sy) — C™(S3),

the so-called Z/2-graded Dirac operator or the Spinor Dirac Operator. This splitting only exists on even-
dimensional manifolds. For odd-dimensional manifolds, the Dirac operator does not split.

4 Linear Analysis on Manifolds

4.1 Linear Differential Operators

Recall the notation |a| = a; + - - 4 «,, for a multi-index o € N™.

Definition 59. Let E,F — M be vector bundles on a smooth manifold M™ of respective ranks tTkE =
p,tkF = q. A differential operator from C*(E) to C*°(F) of order < k is a linear map

P: C®(E) — C=(F).

In local coordinates (z',...,2™) on U C M and in local trivializations E|y = U x RP, F|y = U x R? we
require that P may be expressed in the form

oled
(PO)(@) = Y A™(@) e, @ €U,
1 n

where A%: U — R7*P are smooth functions (this condition is independent of the choice of trivializations and
coordinates).

2This is not correct: Exercise Sheet 6 indeed yields a Spin(n)-representation which extends to an algebra representation of
Cl(n)o. But this “linearizable” representation does in general not coincide with the given Spin(n)-representation. An example
for n = 2 is given by the irreducible complex Spin(2) = S!-representation of weight 3 (“Spin = 3/2”). Then the resulting
Sl-representation is of weight —1.
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Letting Dy (F, F') denote the set of differential operators from C*°(E) to C°°(F) of order < k, we have
inclusions

Di(E,F) D Dx_1(E,F)D---DDy(E,F)=C>®Hom(E, F))
For P € Dy, Q € D; we have Q o P € Dy, for the composite.

Example 60. On a Riemannian manifold (M,g) let E = M xR, so C*®(E) = C*>°(M,R) are the real-valued
functions on M. Let F = TM be the tangent bundle. From coordinates (x*) on M we get a local frame
(0; = 0/02"); of F. Recall that the gradient of a function f € C*°(M) is the unique vector field grad, (f)
satisfying

df = g(grad,(f), —).

We thus get a linear map grad,: C>°(M) — C°*°(T'M). Locally,

of

grad,(f) = g" 570

so that grad, € D1(E, F). We have (where ‘1’ appears in the i-th position)
g ()
AO010-0) gy — |
9" (x)
all other A% vanish.

Example 61. The esterior derivative d: C(A¥T* M) — C>(A*1T*M) is a differential operator of first
order.

Example 62. For a Dirac bundle S the corresponding Dirac operator D € D1(S,S) is also differential
operator of first order.

Example 63. For a vector bundle E — M with connection VE over a Riemannian manifold we have seen
the connection Laplacian A € Dy(E, E), which is of second order.

Example 64. Let (M, g) be a Riemannian manifold, E = TM, F = M xR. The divergence of X € C*(T M)
is the function divX = —d*a = xd(xa), where a = X” is the differential form which is dual (in the sense of
the metric g) to the vector field X (note that [Roe] uses the opposite convention divX = +d*).
Write o = Aydzx*. Then xao = 3, (=171 Ay fggidat Ao Ada? =P Nda? TN da™, where g = det(gij)
and so
d(xa) = 0; (Aig”\/g) dz' A ... A dz"

or
*d * o = iaj (Aigij\/f])
N
= g7 0;A; + A;0;9" + A;9"70;(log \/7)
We have
8,q% = 7F§agai _ Féagaj
while

9;9 = 9"°90;(gas)

using that % det(A(t)) = tr (Adj(A(t))%) for every smooth function t — A(t) € R™*™ (Jacobi’s formula).
Therefore
1

1
0jlog\/g=——-—=0,0=T17,
! f \/.52\/.6 ! !
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Hence we have the following local expression for the divergence
—d*a = gijain — Aigjkfék.
The differential operator is therefore described by the matrices
A(0::,0) — (_gjkl—\jl_l€7 o _gjkl—\?k)
and (where ‘1’ stands in the j-th place)
A01,0) (g%,...,g")
Example 65. In local coordinates where X = X*0y,, we may also write

_ b
Rz

For the proof, note that x(X,—) = txdvol (obvious for X = ey in an orthonormal frame). This means

div(X) Ik (VgX"). (15)

X" = Z(—l)k_le\/ﬁdxl""%"'"

k

and so
dx X* = O (\/gX")dxt" ™

This n-form is clearly Hodge dual to . This local expression for the divergence is similar to that on R™.
Ezxpanding 0y (\/g) similarly as above leads to

div(X) = 9p X* + T¢, X*.

Definition 66. Let (M, g) be a Riemannian manifold with volume element dvoly, = \/gdz! - - - dz™ (note that
an orientation of M is not required here, so dvol is regarded as a measure on M.) Suppose that the vector
bundle E is equipped with an inner product (—, —)g. We define the L?-inner product

(0¥} = /M (), ()  dvol,

for v, € C*(E), where at least one of these is required to have compact support.

This defines an inner product (a positive definite symmetric bilinear form / Hermitian form) on the space
of sections C*®°(E).

Proposition 67. Suppose E, F — M are vector bundles with an inner product over a Riemannian manifold
M. For all P € Di(E, F) there exists a unique P* € Dy (F, E) with the property

(Pu,v)p = (u, P*v)g (16)
for allu € C*(E) and v € C*(F), one of which is required to have compact support.

Definition 68. The unique differential operator P* described in Proposition [67] is called the formal adjoint
of the differential operator P.

Proof. Since the inner product is positive definite, it is clear that there exists at most one such operator
P*. We wish to prove that it is a differential operator of order < k. For this calculate in local coordinates.
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Suppose therefore that the supports of u, v are both contained in a coordinate neighborhood U of M. Choose
orthonormal frames of E|y, F|y. Then

ey,
Pu,v)pdvol = /(Aaalaﬂf> gdx
[ puvpaver= Y [ (45T 0) e

la|<k

= / (W,\/E(A ) v) dx
laj<p” U AT " B

= Z /(_1)@ (Uamalaa(\/fi(/la)*“) 1) dvol
|Q‘Sk U al .o.an’fl \/g

where we have used integration by parts. It follows that

6|a\ Ac)*
pro= L 3 (e 2

This shows that P* is a differential operator of order < k. To prove for u, v arbitrary, where we assume
without loss of generality that the support of u is compact, we proceed as follows. Write u = uy + -+ +
where u; has support in some coordinate neighborhood U;. Then we write v = vy + -+ 4+ v; + ¥ where the
support of v; is within U; and where the support of v is disjoint from all the U;. Then follows from
linearity and locality of P, P*. O

Example 69. If P = A € C*(Hom(E, F)), the formal adjoint is the ordinary adjoint of the family of linear
maps E, — F,.

Example 70. Let (M™,g) be an oriented Riemannian manifold. Consider d: Q¥=1(M) — QF(M). The
formal adjoint of d is the operator d* defined above in equation . This follows from Stokes’ Theorem for
acQF geqb-l

= *Q) = * —1)k-1 *
0—/Md(5A a) /MdﬁA a+(—1) /MﬁAd( )
= (4B, ) + (~DF TR [ Ak d(xa)

M
= <dﬂ,0&> - <ﬂad*a>

using the definition of the Hodge star df Ao = (df3, o)dvoly, where dvol, € Q" (M) is the (oriented) volume
form on M.

Example 71. Let (M,g) be a closed Riemannian manifold and let S — M be a bundle with connection
and compatible inner product. The covariant derivative is a map V: C®°(S) — C°(T*M ® S). We shall
compute the formal adjoint V*. Choose a frame (e1,...,e,) of TM on U with corresponding dual frame €°,
so that €'(e;) = 6. Let &' © s, € C°(T*M ® S) and s € C=(S). Define w = €'(si,s)s € QL(U) using the
inner product on S. Then by Stokes” Theorem and Lemma[3]) we have

O:/ d*w
M

d*'w = g'%e; V,,w
Ve, w = —F};qsq(si, )+ &'V, (54,5)

SO

0= / (gjkl"};j(si, s) — gjkvek(sj, s)) dvol = / (gjkl"};j(si, s) — gjk(Vksj, s) — gjk(sj, Vks)) dvol.
M M
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Since V(s) = e¥V(s) we also have
(gj ® 85, V(S)) = gjk(sja vks)
Integrating over M then gives

(67 ®s;,V(s)) = / (gjkl"};jsi — ¢*Vsj, s) dvol.
M

Thus V*(e' @ s;) = gjkfzjsi — g%V 5. A similar computation can be used to give an alternative approach

to Example [6])

In case (e1,...,ey,) is an orthonormal frame, synchronous at p, this simplifies to
V*(e' ® s4) ZV

From this calculation, we obtain for the connection Laplacian defined in :
Proposition 72. A=V*oV.

Proof. For (e1,...,e,) an orthonormal frame, synchronous at p we have A(s)|, = — > Vi (s), while
V*V(s)|, = V*(¢'V;s) ZV2 O

It follows that A is a non-negative operator:

Using D? = A 4+ K from Theorem [33| we conclude:
Theorem 73 (Bochner). Let S — M be a Dirac bundle with (Ks,s) > 0 for all s # 0. Then ker(D) = 0.

Proof. Ds = 0 = D?s = 0 = 0 = (D?s,s) = (As, s) + (Ks,s) is the sum of two non-negative numbers.
Hence both are zero, so K's = 0, which by assumption implies s = 0. [

Example 74. Let (M,g) be a spin manifold, let W be a Cl(n)-representation, and let S — M be the
corresponding Dirac bundle If scaly > 0 at every point, then ker(D) = 0. This follows since in this case, K
1s multiplication with scal (see Theorem ,

Example 75. Let S — M be a Dirac bundle. Then D* = D (so the Dirac operator is formally self-adjoint).
To prove this, we choose an orthonormal frame (e1,...,e,) synchronous at p. At p we have

(Ds1,82)|p — (81,Ds2)|p = Z ((eiVis1,82)s — (s1,€iVis2))g
= Z i(eis1),52) g + (€is1, Visa) g
= Z Vi(eis1,82)g = d*w,

where w = —(e;81, s2)e* (use Lemma . From Stokes’ Theorem it follows that (Dsy, s2) = (s1, Dsa).
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4.2 Sobolev Spaces

Definition 76. Two norms || - |1, - ||l2 on a (possible infinite dimensional) vector space V are equivalent if
we find constants C1,Co > 0 so that
Crllzfly < lzll2 < Collz]lx

forallz eV.
In the following we repeatedly use the following principle: Let || —||; and || — ||2 be two equivalent norms
on V. Let (V,]| — 1) and (V.|| — ||l2) be the completions of V' with respect to these norms (consisting of

equivalence classes of Cauchy sequences). Then the identity induces linear bounded maps

Vil =1l = Vil = 1l2)

and hence these two completions are canonically isomorphic as topological vector spaces.
Let E — (M, g) be a vector bundle with Hermitian metric over a Riemannian manifold (M, g). Recall
that for u,v € C2°(E) we have defined the L2-inner product as

(u,v) 2 = /M(u,v)E dvol.

This defines a Hermitian form on the space C2°(FE).

Definition 77. L?(E) is the Hilbert space completion of the inner product space (C2°(E), (—, —)1z2). We call
it the Hilbert space of L2-sections of E (even though, strictly speaking, the elements are not genuine sections,
but may be modified on sets of measure zero). We write ||ul|3. = (u,u)r2, which controls the average of u.

We wish to define norms which control not only the average of the values of u, but also all averages of the
derivatives of order up to k. We begin with the important special case of the torus M = T™ = R/(2rZ") with
the standard flat metric (induced from R™) and the trivial bundle E = M x C. Then C*(E) = C*>(M,C)
are 2m-periodic complex-valued functions.

Fourier Expansions. The functions u,(z) = (27)~"/2e!®*) for v € Z™ form an orthonormal basis of
L?(T",C) (they are obviously orthonormal. Using the Stone-Weierstra Theorem, they can be seen to span
the Hilbert space). It follows that any ¢ € C*°(T™) may be expressed as an L?-convergent series

o= Y 0. whee p() = (pu) = [ plojuiods

veZ™

We call {¢(v)}ezn the Fourier coefficients of ¢. Then we have Parseval’s identity
lell7e =Y )@ (w, u) =D [2(w)[*.
U, 1 v

Differentiation and multiplication correspond to each other under the Fourier transform:

Gp [0 N\ _ [ ow\_ .

12}

using integration by parts and g% = ivju,.

This relationship between differentiation and the Fourier coefficients leads us to the following definition:
Definition 78. Let k € N and u,v € C>®(T"). Define the k-th Sobolev norm (also called H* or W*:2)
(w,o)wn = Y a@)o@)(1 + [[v]*)*
vEL™

Using ([17)), this series is seen to converge absolutely. The Hilbert space completion W*(T™) of (C°°(T™), (—, —)w«)
is called the Sobolev space of degree k.
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For example, WO(T") = L?(T™).

Proposition 79. If0 < ki < ko, then the inclusion W2 (T™) — Wk (T™) (given by extending the uniformly
continuous map C>(T™) — Wki(T™) to the completion Wk2(T™)) is continuous.

The map F: W*2(T™) — WF (T™) is injective (this is not obvious, because a non-injective map may
well be injective on a dense subspace). It suffices to show that W* — L? is injective, because then F' may
be post-composed with W*' — L2 to give the injective map W*> — L2. Suppose therefore that v € W*?
satisfies ||ul|2 = 0. Then all Fourier coefficients 4 (r) = 0 vanish and so ||u||y+ = 0 and u = 0.

Example 80. Let o € C>°(T™). Then by we have
lellis = > 18P+ V)1?) = lel7e + llgrad(9)l1Z.-
vezn

Thus || - |[w: controls both ¢ and its derivative in the average. Similarly, || - |lw+ controls all derivatives up
to order k in the average.

Definition 81. For k € N and ¢ € C(T™) let
alely
lellon = max i N o rewn

This norm controls the mized derivatives up to order k at every point (not just in the average). Note however,
that this norm is not induced by an inner product.

The completion of the normed space (C*°(T™), || - ||c+) may be identified with the Banach space C*(T™).
The follows from the fact that any f € C*(T™) may be approximated in the C*-norm by smooth functions.

Proposition 82. The identity map (C(T™),|| - llcx) = (C°(T™), | - lw*) is continuous. We thus get a
continuous map CF(T™) — WE(T™) on the completions.

Proof. Using the multinomial theorem we calculate for v € C>(T"):
) X kA (lal\ o
fulf = 3 P+ 2 = 3 jaee 3 () () e
vezn veL™ || <k

By Parseval’s Theorem and we have

dlely

~ a2

>l = |5

2

vezn L2
ol 112
Combining these two equations with H %‘z‘a“ LS vol(T™)||ul|2 completes the proof. O

As by-product of the proof we obtain the following generalization of Example

vt = 52 (1) ()| 5

The following (somewhat surprising) theorem may be regarded as a converse of the previous proposition:

2

(18)

L2

Theorem 83 (Sobolev Embedding Theorem). For s > k + n/2 we find constants C = C(n, k, s) such that
[uller < Cllullws
for all w € C°°(T™). Passing to the completions, the identity map therefore induces a continuous embedding

We(Tm) — k(™).
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Proof. Using the Fourier expansion of w € C°°(T™) and the triangle inequality for || - ||cx we find

Yo A < (Z |a(v)] - |qu||ck>

veL™ Ck vezn

lullEn =

we will show that the right hand side is finite, so that the series » U(v)u, converges absolutely in the
vEZ
Banach space C*.)

From 5% = (iv)%u, we find [Ju, |3, = max, < [[°]?]Jun]|% < (27)7"(1 + [[v]|?), so that

2 2
lullgn < (2m)~ <Z ) - (1 + vl )k/2> (Z @)l (L4 [V]2)°72 - (1 ) *)72 )

veEZL™ vEZ™

Now an application of the Cauchy-Schwarz Inequality in /2 gives

lulln < (2m)” <Z a(@) (@ + [Iv*)* ) (Z (1+ IVIIQ)’”> < C ulliy

VGZ/VL VeZ’Vl

for the constant C' = (27) ™" [, (1 + |x|?)*~*dx, which converges precisely when k — s < —n/2. This proves
the inequality stated in the theorem, so that the identity map on C'*°(7T™) may be extended to a continuous
map F: W?* — COF. This map is injective, using the same argument as above (C*-convergence implies
L?-convergence on the torus). O

Remark 84. The definition of the norm || - |lw= clearly also makes sense for real s > 0. The theorems in
this section continue to hold for these more general Sobolev spaces.

Theorem 85 (Rellich’s Theorem). For ky < ko the inclusion W*2(T™) — Wki1(T™) is compact.
This means that any || - ||+, bounded sequence has a convergent subsequence for the norm || - ||j3#; -

Proof. Let B = {u € W*2 | |lu|yy», < 1} denote the unit ball in W*2. For N € N define Zy = {u € W*2 |
w(v) =0 V|v| < N}. For u € Zn we have the estimate

lalfpe, = D 1a@)PQ+ ]P0+ P57 < (14 N2)F R, (19)
[v|>N

Let (u,) € B. As Wk2/Zy is finite-dimensional we successively find subsequences for which i v (V)
k
converges for all |v| < N. Passing to the diagonal gives a subsequence v, = u, v for which all O (V)
k

converge. It remains to show that (v,) is a Cauchy sequence in || - |[y+, -
Let ¢ > 0. Pick N with (1+ N?)"~*2 < 2. Then by

[vn = vl < an - Z UVHWkl + H Z O (v vaWkl + Z [ (00 (V) = O (V) [ iy
lv|<N lv|<N lv|<N
€ZnNNB cZnNNB
Sedet D o) = o)L+ [V <26+ 1+ NP Y [ia(v) — (V)]
[v|<N lv|<N
For n, m sufficiently large, the last summand is also < €. O

We now define Sobolev spaces of sections of vector bundles over closed Riemannian manifolds. Let £ — M
be a vector bundle with inner product and connection (not necessarily compatible with the inner product),
defined over a closed Riemannian manifold (M, g). Given a section v € C°°(E) the covariant derivative is
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a section Vu € C(T*M ® E). On the tensor product T*M ® E we use the connection characterized for
a€C®(T*M),s € C*(FE) by

V§*M®E(0¢ ®s)=Vi(a)®s+a® VE(s).

Then VVu € C®(T*M @ T*M ® E), and so forth. In the case of E = M x C, M = T"™ a section may be
viewed as a function u: T™ — C and we have

V(u) = du = d;udz’
VV(u) = 9;0;udx’ ® d?

dlely

Ve V) = S

dz*' @ -+ @ dx*

which is the usual higher total differential.

Definition 86. Let M be closed Riemannian manifold and let E — M be a vector bundle with inner product
and connection V. For k € N the k-th Sobolev norm of a section u € C*°(E) is defined as

k
a2 .
[ o :;HV uHL2, Viy=V---Vu.

a times

The Hilbert space completion of C™(E) for this norm is the k-th Sobolev space of sections W¥(E).

From (|18)) and the calculations preceding the definition it follows that this new Sobolev norm is equivalent
to the old one (in the case M = T™ and the trivial line bundle F). Definition [86|is more intuitive than
Definition however, the Sobolev and Rellich theorems rely on Fourier decompositions, which is most
conveniently carried out on the torus.

Definition 87. For k € N we define similarly as in Definition [B1] above

j— a
Jullor = ma, 197l

(note that this norm is not induced by an inner product.) The completion of the space C°(E) with respect
to this norm is the Banach space C*(E).

Proposition 88. Over a closed manifold M, the equivalence class of the so-defined norm || - ||+ is inde-
pendent of the choice of metrics on M, E and the choice of connection V on E. In particular, on T™ it is
equivalent to the norm defined by .

For the proof one selects a finite cover of M by coordinate balls U; =~ B;1(0). The bundle E can be
isometrically trivialized over each U; (because it is contractible) and we may restrict attention to sections
that are compactly supported in U;. This is because, using a partition of unity, any section may be written
as a finite sum of sections with support in U;. Then the metric g and connection V are determined on U;
by the components g;; of the Riemannian metric tensor and the Christoffel symbols I'} . All these (real or
complex valued) functions and their derivatives are bounded on the relatively compact set U; C M and the
bounds can be estimated against each other (from above and from below) for any two choices of g and V on
M.

For example, for functions on R™ with compact support within the relatively compact unit ball B;(0) C
R™, one can directly check that (for a non-standard metric g and connection V) that the Sobolev norm

lullfyr = llulZz + IVulZ:

is equivalent to [jul2, + >, ||8wu||iz where we use the standard derivative of functions on R™ and the
standard volume element on R™. More details can be worked out in Exercise 1 on sheet 8.
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Similarly, one shows that the norm || - ||+ on C°°(M) is equivalent to the following one, defined in terms
of local trivializations: the sets U; are diffeomorphic to open subsets of 7. Let x? be a partition of unity
for this cover. Then || - ||y« is equivalent to

lall® = sl e m (20)

where u; = Y; - u are regarded as C™(¥)_valued functions on 7™ (using isometric trivializations of F and
charts).

Similar arguments show that the C*-norm is does not depend - up to equivalence - on the chosen
metrics on M and E and the choice of connection on F.

Theorem 89. Let E — M be a bundle with inner product and connection on a closed Riemannian manifold
M. Then the identity map C*°(E) — C*(E) induces

1. bounded inclusions C*(E) — WF(E),
2. [Sobolev Embedding Theorem]| bounded inclusions W*(E) — C*(E) for all s > k +n/2,
3. [Rellich| compact inclusions W*2(E) — W¥*L(E) for all ky > k.

Proof. Choose U; =~ B1(0) C (—m,m)" CT™ as above. Writing u = Y x;u, we see that is suffices to work in
the space Cgy v, (E) of smooth functions with support in U;, where the different norms are equivalent to

our previously considered norms on 7", compare Equation .
O

Proposition 90. Let E, F' — M be vector bundles with metrics and connections over a closed Riemannian
manifold (M,g). Let P: C®(E) — C°°(F) be a differential operator of order < k. Then P extends to
bounded linear maps WEH(E) — WY(F) and C**Y(E) — CY(F).

Proof. Being local, the operator P takes C°(U;, E) to C°(U;, F). Let u € C°(M) and u = x; - u as above.
In trivializations over the chart neighborhood U; we may write

olaly,
Z AO{ (5] lan :
la] <k 8 0 On

The operator norms of the matrices A*(z) (and their derivatives) are bounded on U;. Using the Leibniz rule
for higher derivatives, we get

918 | ol
|Puillf <€ 3 55( 3 4 axi‘ )7

1B1<l loe| <k

3MA glal+ld
< c Z Z H ox? oo ’ H 6l.oz+6uz HL2 < C||u1||?/Vl+k < C”’U’H%/VHHC
[y[+10]<! || <K

for a generic constant C'. Summing up over 4, the result follows from . The argument for the C*-norms
is similar. O

4.3 Analysis of Dirac Operators

Let (M, g) be a closed Riemannian manifold and let S — M be a Dirac bundle with corresponding Dirac
operator D: C®(S) — C°°(S). Obviously D € Dy(S,S) is of first order. By Proposition [90| we have

[Dsllz2 < Clisllwr

for some C > 0. The Garding inequality is a non-trivial converse of this inequality:
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Theorem 91 (Garding inequality). There is C > 0 so that ||s|lw: < C(||s||z + | Dsl|rz2) for all s € C*°(S).
Proof. Recall that D?(s) = V*V(s) + K(s) by the Weitzenbock formula (Theorem . Therefore

(Ds, Ds)p2 = (D?s,8) = (V*Vs,s) + (Ks,s) = (Vs,Vs) + (Ks, s)

and so | Ds|3. = ||Vs||3. + (Ks, s). On a coordinate patch U C M we have

IVs[2 = /Ugij((%s,ajs) + 269 Re(d;5,Ty5) + ¢ (Tis, T )
> Cillslliys = Callsllwollsllws
using that V; = 9; + I';. Hence, summing over finitely many coordinate patches covering M,
IDsllye > Csllsl3 — Callsllwo - sl

For every ¢ there is K so that ab < ea? + Kb? (for all a,b > 0). This is clear because for x = a/b the function
x — ex? is bounded above by some constant K. Using ¢ = g—j we find

1
2
1
Callsllwr - lIsllwo < §C3||SH12/V1 + K5[0

so that o
3
1Dl > < lsllivs — Klls|fyo
from which the Garding inequality easily follows (note that || - [[y0 = | - |22 by definition). O

Theorem 92 (Elliptic Estimates). Let S be a Dirac bundle over a closed Riemannian manifold M. For
k € N there are constants C, > 0 with

[sllweer < Crlllsllwe + [ Dsllws), s € C(S).
for all s € WkFL(9).

Proof. We proceed by induction, the case k = 0 being the Géarding inequality. For the induction step we can
assume that s € C°°(S) by an approximation argument. In local coordinates

S 1 < A 828 . < A Ch_ 81-8 —1 + Dals -1
s llwes 1D 0ssllwe < ALY Cror D (|98 wrr + [ Disllwn—)

=1 =1
<Az|ls|lyx

by induction. Moreover, for the second term we have
|1DO;s|lwe—r < (|0 Dsllws—1 + I[D, Bilslwr— < As||Ds|wr + Aalls|w

where we use Proposition applied to D and the differential operator [D, 9;] € Dy of first order (for example,
[f01,02] = (O2f)01 and similarly in the case of the Dirac operator). O

Interlude: Unbounded Operators
Let H be a separable Hilbert space (such as ¢2(N) or W¥(E)). The Dirac operator is a linear map
D: C®(S) = C>(S)

on the dense subspace C°°(S) of the Hilbert space L?(S). We have an estimate || Ds|/z2 < C||s|lw1, but
[|IDs||r2 cannot be controlled by ||s| 2.
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Definition 93. An unbounded operator on a Hilbert space H is a linear map A: Dom(A) — H defined on
a dense vector subspace Dom(A) C H.

Recall that by the Closed Graph Theorem a linear map A: H — H is bounded precisely when its graph
I'(A) is a closed subset of H x H.

Definition 94. A unbounded operator A: H O Dom(A) — H is said to be closable if T'(A) C H x H is the
graph of a (uniquely determined and linear) map A: H D Dom(A) — H. Equivalently, (0,y) € T'(A) implies
y=0.

Proposition 95. Let E — M be a Hermitian vector bundle over a closed Riemannian manifold. A dif-
ferential operator P € Dy(E) defines an unbounded operator L*(E) D Dom(P) = C*®(E) — L*(E). The
operator P is closable.

Proof. Suppose x; — 0 and Px; — y in L%, where z; € C*°(E). We must show y = 0. Consider the inner
product with an arbitrary € C*°(E):

(x,y)r2 = lim{x, Pa;)p2 = im(P*x,2;) 2 = (P z,lima;) 2 =0
Since C*°(E) is a dense subspace of L?(FE), it follows that y = 0, as required. O

Proposition 96. Let S — M be a Dirac bundle. Then Dom(D) = W(S).

Proof. s € Dom(D) is equivalent to the existence of a L?-convergent sequence s; — s, s; € C°°(S), with Ds;
convergent in L2. Then the sequence s; is W!-Cauchy, by the Garding inequality:

Isi = sjllws < Cllsi = sjlle + [|1Dsi — Dsjl2)-

It follows that the limit s of the WW!'-convergent sequence s; also belongs to W?'. This proves Dom(D) C
W1(S). Conversely, if s € W!(S) then we have a W!-convergent sequence s; — s. Then also s; — s in L?
and Ds; — Ds in L? by Proposition O

Note that by Proposition [90| the closure D: W1(S) — L2(S) is bounded.

Definition 97. Let P € Dy (E) be a differential operator. Let x,y € L*(E). We say that Px = y weakly if
(z, P*) = (y,90)  Vp e CF(E).

If z,y are smooth and Px = y, then by definition of the adjoint differential operator, Px = y weakly.
Question: If Pz = 0 weakly, does it follow that Pz = 0 (meaning that x € C°°(E) and that z lies in the
kernel of P)?

The point of weak solutions is that we may use abstract Hilbert space theory to construct them. The
affirmative answer to our question later for P = D will then give us actual solutions of the PDE Dx = 0.
Smoothing Operators

Definition 98. Let E, F — M be vector bundles with inner product over a closed Riemannian manifold.
An operator A: C*°(E) — C*(F) given by the formula

(Au)(y) = /M K(y, 2)u(z)dvol(z)

where K € C°(F X E*) (the smoothing kernel) is called a smoothing operator.

Here EX F = prj E ® prs F' denotes the exterior tensor product of vector bundles £ — X and F — Y.
This is a bundle over X x Y with fiber over the point (z,y) given by E, ® Fy.
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Proposition 99. 1. The operator A admits a unique extension A: L*(E) — L*(E).
2. We have A(L*(E)) C C*(F).

3. For all k > 0 the operator A: L*(E) — C>™(F) C W¥(F) is continuous (for the norms || - || and

I lwe).-
(the last point motivates calling A a differential operator of order —oo)

Proof. For v € C*°(F) we have, using the Cauchy-Schwarz inequality

| Aul|2, = /||Au JI[2dvol(y /H/ K(y, z)u(z)dvol(x)
[ ([ 1K atasoi) - [ |u<x>||2dvol<x>) avol(y)
(/ / | K (, z||*dvol (z)dvol(y > /||u )||2dvol(z)

= |KZ> - [lulZ-

2
dvol(y)

This shows that |A|| < ||K||z2 for the operator norm (in fact, they are equal), which proves 1. Item 2. is
immediate by differentiating under the integral sign. For 3., consider P € Dy (F). Then P o A is again a
smoothing operator with kernel P (K (—,z)). Applying 1. to Po A for P = V*, 0 <i < k we get

IV o Au)l|z2 < Cil|ul|2.
This gives an inequality ||Au||yx < Dgllul|z2- O

In order to approximate L2-sections by smooth sections we will need families of smoothing operators:

Definition 100. A family F.: L*(E) — L*(E) for ¢ € (0,1] of smoothing operators is called a Friedrichs
mollifier if

o Every F. is self-adjoint, meaning (F.x,y) = (z, F.y) for all z,y € L*(E).
o The family F; is uniformly bounded, meaning that we find C > 0 with | F.|| < C (Ve € (0,1]).

e If B € Dy(E) then [B, F.]: C*°(E) — C*®(E) induces a family of bounded operators L*(E) — L?*(E)
with uniform bound C, meaning ||[B, F.]|| < C (Ve € (0,1]).

o We have F. — idp2(g) in the weak operator topology, meaning that (F.x,y) — (x,y) for all x,y € L?.
On exercise sheet 8 we shall see that Friedrichs mollifiers do indeed exist.

Definition 101. Let A: H D Dom(A) — H be an unbounded operator. The adjoint A* is the unbounded
operator A*: H D Dom(A*) — H where

Dom(A*) = {y € H | Dom(A) = H,z — (Az,y) bounded}

For y € Dom(A*) the functional (A—,y) may be extended to H, so the Riesz Representation Theorem asserts
the existence of a unique z € H with (A—,y) = (—,2). We define A*y = z. Thus

(Az,y) = (x,A"y) Vo € Dom(A),y € Dom(A").

Note that Dom(A*) needn’t be a dense subspace of H, so strictly speaking A* isn’t necessarily an
unbounded operator.

Definition 102. An unbounded operator A: H O Dom(A) — H is called symmetric if
(Az,y) = (x,Ay) Vz,y € Dom(A).
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In this case, Dom(A) C Dom(A*).

Definition 103. An unbounded operator A: H D Dom(A) — H is essentially self-adjoint in case
1. A is closable,
2. A is self-adjoint, meaning Dom(A*) = Dom(A) and A = A*.

Example 104. For a Dirac bundle S — M over a closed Riemannian manifold the Dirac operator D is
essentially self-adjoint. By definition, y € Dom(D*) means that we find z € L*(S) with (Dx,y) = (z, z) for
all z € W(S). This is equivalent to

(Ds,y) = (s,z) VseC>®(9),
i.e. that Dy = z weakly. Our assertion now follows from Proposition [107] below.
Before undertaking the proof, we review the notion of weak convergence.

Definition 105. Let (u,) be a sequence in a Hilbert space H. We say that u,, — u weakly if
(un,s) = (u,s) VseH
Remark 106. 1. Since (,) is positive definite, such a weak limit s is unique.

2. If up, — u, then u, — u. The converse is false (for evample, take H = (*(N) and the standard basis
Up = €p).

8. If A: Hy — Ho is a bounded operator and u, — u, then Au, — Au.

4. Every bounded sequence (uy) in H possesses a weakly convergent subsequence (Theorem of Banach-
Alaoglu).

Proposition 107. Let y,z € L*(S) and Dy = z weakly. Then y € W'(S) = Dom(D) and Dy = z.

Proof. Let (F.) be a Friedrichs mollifier for S — M. Define y. = F.(y). According to Definition [100] we
have y. — y weakly. For s € C>°(S) we have

[(Dye, s)| = [(DFey, s)| = [y, FeDs)| < [(y, DFes)| + [{y, [D, Fe]s)|

=(2,Fes)<Cu|ls|| <Calls]|

The first equality in the underbrace uses the fact that Dy = z weakly and the inequality in the second
underbrace uses the fact that [D, F¢] is globally bounded by the properties of Friedrichs mollifiers. It follows
that ||Dy.|| is bounded in the L?mnorm. Combining this with Garding’s inequality, we see that ||yc||y is
bounded, so we obtain a weakly convergent subsequence y. — 3’ for some y' € W1(S). Since W! — L? is
bounded, it follows that y. — 3’ in L?. The uniqueness of weak limits implies 3’ = y. This proves y € W.

Let Dy = 2’ € L*(S). By definition, we find an L2-convergent sequence y,, — y with 3, € C>(S) and
Dy,, — z’. We wish to prove z = z’. For s € C*°(S) we have

(z',8) < (Dyy, s) = (yn, Ds) — (y, Ds) = (z, s)
It follows that z = 2’. O

Theorem 108 (Elliptic Regularity). Let s € W1(S) and Ds = 0. Then s € C*(S) is smooth (and of course
Ds=0).
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Proof. As a preparation we show that for all & the operators
F.,[D,F.]: WF(S) — Wk(S),

are uniformly bounded in e, compare Roe’s proof of Proposition 5.24. (The assertion for [D, F¢] is some-
times called Friedrichs Lemma). For estimating [D, F,] we need to work with special mollifiers defined by
convolution, compare Roe’s Exercise 5.34., respectively our Exercise 2 on Sheet 8.

For k = 0 the above claims follow from Definition

For the inductive step, we first show that the W**!-norm of F, is uniformly bounded. Let s € W*+1(S).
We use Theorem [02] the induction hypothesis, and Proposition [90] to see

[Fesllwrer < C (| Fesllws + [[DFes|lws)
S C([IFesllws + [1FDsllws + 1D, Felsllws) < Dlislwr+

We show next that the W**!l-norms of [D, F.] are uniformly bounded. By a partition of unity we can
work in a local chart neighborhood R™, where S = R"™ x R! is trivial. Let (F.) be Friedrichs mollifiers,
defined by convolution with ¢.(z) = e "¢(z/e), where

o(z) = {exp<—1/<1 —[=?) ll=] <1,

0 Jall > 1.
For a section s: R™ — R’ we define
F.s(x) = /(bs(x —y)s(y)dy.

Using integration by parts it is easy to check that F. commutes with all differential operators 9;. Compare
Exercise 5.34. (iv) in Roe (for differential operators B with constant coefficients).

By definition of the Sobolev norms, it suffices to prove that 9;[D, F| defines a uniformly bounded family
of operators Wkt — W¥* for i = 1,...,n. For this we use local coordinates to write D = Djaj with
D’ € C=(R",R") bounded. Then, using that F. commutes with all 9; we have

9:[D, F.] = (0;D7)F.0; + D' F.0;; — F-(0;D?)9; — F.D70;;
(D, F.)0; = DIF.0;; — F.D?0;;

Hence A ‘
0;[D, F,] =D, F,]0; + (0;D’)F.0; — F.(0;D?)0,

multai Di

All three families W+ 2y b I2FL e ppir 2ig pe Feo b Wk, and Wh i,

mult, -,
wk GRS 7 (N WF, are uniformly bounded by induction. Here we note that the multiplication

operator with the bounded function 9;D7 defines a bounded map W* — Wk,
After this preparation, we may now prove the claim of the theorem: s € W*(S) for all k. We work by
induction. By assumption s € W?. Let’s assume s € W*. Since Ds = 0 we have

[Fesllweer < Ck | | Fesllwe +  [|DEs|lwex
—_——

=D, Fe]sllyr <C

Here we use the estimates for F, and [D, F¢] proven before. Since || F.s|ywr+1 is bounded, we find a weakly
convergent subsequence F.,s — § in W**1. But since F.s — s we get s = § € W**1(S). Because s € W¥(S)
for all k, Sobolev’s Theorem [83] implies s € C°(.5). O
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Eigenspace Decomposition of D

Recall that the Dirac operator is a self-adjoint operator D: L*(S) D Dom(D) — L?*(S). We denote the
graph G =T'(D) =T'(D) C H @ H. By Propositions |96 and we know that

G = {(,y) € L3(S) x L*(S) | D =y weakly} = {(z,y) € W(8) x I(S) | Dz = y}.
Lemma 109. Let J: HO&H — HOH, (z,y) — (—y,z). Then HEH =GB JG is an orthogonal direct sum.

Proof. (z,y) € G+ means that for all s € C°°(S) we have 0 = ((z,y), (s, Ds)) = (z, s)+(y, Ds). Equivalently,
x = —Dy weakly which is equivalent to (—y,x) € G or to (x,y) € JG. O

Definition 110. Let prg: H®&H — G denote the orthogonal projection onto the graph. Define Q: L3(S) —
L2(S) by the equation prg(z,0) = (Qz, DQx). In other words, we set Qx equal to y if y, Dy € W1l and
x =y + D?y (by the lemma, a unique such y can be found for any x € L*(9)).

We note the following properties:

1. Qr € W(S) = Dom(D).

2. Since projections prg have norm 1, we get [|Qz||7. + |DQz||7. < ||lz[|7.. Thus ||Qz|/z> < ||z|z> so for
the operator norm of @ we get ||Q|| < 1. Moreover, ||DQz| 12 < ||z||12 and by Gardings inequality, @
is a bounded operator L?(S) — W1(S):

lQ(@)llw+ < C (IQxlz2 + [1DQzl|z2) < Cllz]

Combined with Rellich’s Theorem [B5 we get a compact operator

Q: L*(S) = W(S) — L*(S)

3. Q is self-adjoint because pr§ = prg (projection operators are self adjoint):

(Qz,y) = ((Qx, DQx), (y,0)) = ((x,0), (Qy, DQy)) = (z,Qy)
———— —_——

=prg(z,0) =prg(y,0)

4. @ is non-negative: -
(Qu, z) = (Qz, DQx), (x,0)) = (prg(z,0), (,0)) = 0

since projections are non-negative.
5. Q is injective: if Qx = 0 then (x,0) € G+ = JG so x = —D0 = 0.

By the Spectral Theorem (see exercise sheet 9) for compact self-adjoint operators we get a sequence of
real eigenvalues 1 > a3 > ag > --- > 0 tending to zero so that the entire Hilbert space may be decomposed
into the corresponding finite-dimensional eigenspaces Eig(Q, «;) of the operator Q:

H= m, Fig(Q,a) = {r € L*(S) | Qz = ax}.

Lemma 111. For 0 < a <1 let X be the positive solution to A2 = (1 — a)/a. Then
Eig(Q, a) C Eig(D, \) @ Eig(D, —)\). (21)

Moreover for a = 1 we have Eig(Q, 1) C ker(D) = Eig(D,0).
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Proof. Let x € Eig(Q, a) for 0 < a < 1. Then Qz € W and by definition of Q we find y € W with
(ax,aDz) + (—Dy,y) = (Qz, DQz) + (—Dy,y) = (2,0) € G & JG.
This means (o — 1)z = Dy, y = —aDz. Let z = —Zy. Then Dz = Az, Dz = Az so
x + 2 € Eig(D, \),x — z € Eig(D, — )
If a = 1 then Dy =0,y = —Dx so D?*z = 0 and Dz = 0 (because | Dz||?> = (Dx, Dz) = (D?z,z2) =0). O

Since the eigenspaces of @ are mutually orthogonal, we conclude equality in . In particular, all
Eig(D, \) are finite dimensional. Summarizing we get

H = P Eig(Q, ) = ker(D) @ Eig(D, M) @D Eig(D, )))

Ai>0 /\j<0

for a discrete subset {\;, A\;} C R with accumulation points only at +oo. It follows from our argument and
because H is infinite dimensional that A; — oo or A; — —oo or both.

We call 0(D) := {\ € R| X eigenvalue of D} the spectrum of D.

We get the following generalization of the Theorem [TI08]

Theorem 112 (Elliptic Regularity). Let A € o(D) and s € Eig(D, X). Then s € C*(S) is smooth. Hence
all eigenspaces of D consist of smooth sections and are in fact eigenspaces of D.

Proof. The proof of Garding’s inequality Theorem [91] and the elliptic estimates [02] apply as well to the
operator Dy := D — X\ -id: Using the Weitzenbock formula we have Di = V*V + K where K is a first order
differential operator and this is in fact enough for the proof of Theorem [91] go through.

Hence the proof of Theorem m applies as well to Dy instead of D. O

We hence get an orthogonal decomposition
128 = @ FigD,))
A€o (D)

where each eigenspace is a finite dimensional subspace of C*°(S) and the eigenvalues A\ have accumulation
points only at +oo.

Remark 113. e One can show that the spectrum of D is in general not symmetric around 0.

e One can also show that the spectrum of D is neither bounded from below nor from above.

Functional Calculus
Any s € L?(S) may be decomposed orthogonally as
s= Y sn lsalle < lsllzz, sx € Eig(D,\) (22)
A€o (D)

where each s, is smooth.
As the next example shows, this may be regarded as a generalized Fourier expansion:

Example 114. Let D = —i%: C*°(S',C) — C=(S',C). Then o(D) = Z and Eig(D, \) = Ce*.

[A] =00

Proposition 115. Let s € L2(S). Then s is smooth if and only if for all k we have |A[* |[s]| ;2 0.
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Proof. We use the following estimate on the eigenvalue growth of D, proven further below in Proposition
ﬂ For A > 0 let N(A) be the number of eigenvalues of D (counted with multiplicity) whose norm is
bounded by A.Then

n(n+4)

NA)<CA+AN)"7=2,

where n = dim M and C is a constant, which depends only on M and the rank of S.
Now for the proof of the proposition, note that sy € C*, by elliptic regularity. Applying Theorem [92] we
have by induction
lsxllwe < CrlAl*[lsall 2
[A|—o00

Now assume that [A|||sx|| 2 —— 0 for all £. Pick k > 0. Then, for all large enough n > 0, we have

1
s <Cp-Nn+1 max  |M||s < =
X e SGeN ) e e < 5

because n? - Cj, - N(n + 1) max,, < |x|<n+1 |A[*¥[sx]| 2 tends to 0 as n goes to infinity by our assumption and
the above estimate on N(n+ 1). Hence ZAGU(D) sy converges absolutely in W*-norm. We conclude s € W*
for all k£ and hence from Theorem B3] s € C*°.

Conversely, if the series s = > sy, € WF(S) for all k, then > |A[?*||s5||> = ||[D*s||2, < oo for all k and

hence [A[* [[sy] ;2 R for all k. O

Example 116. To deduce the convergence of the series > o (k) for ¢ rapidly decreasing it is important
to have growth estimates for (\i). Indeed, consider the slowly growing A\ = In(k) and () = exp(—\).
Then ¢ is rapidly decreasing but p(\) = 1/k which gives the non-convergent harmonic series.

Definition 117 (Functional calculus). For a bounded function f: o(D) — R we define the operator

F(D): LA(S) = L2(S), Y sy f(M)sa
From the functional calculus we take the following facts:
LA[f(D) = supreq(py [f (M) In fact, o(f(D)) = f(o(D)).

2. The map f + f(D) defines a ring homomorphism Abb,(R) — B(L?(S)) on the ring Abby(R) of
bounded functions R — R with point-wise addition and multiplication.

3. If f € O(JA|7F) for all k (we call such f rapidly decreasing), then f(D)(s) € C°°(S) is smooth for any
s € L*(9). In fact, it is a smoothing operator (see Exercise sheet 9).

4. Let f(x) = zg(z) for bounded f,g. Then f(D) = Do g(D) = g(D)o D on W(S).
5. f(D) is self-adjoint.
6. For the constant function 1 we have 1(D) = idp2(s).

Example 118. Let f-(\) = exp(—eA?), € > 0. Ife > 0 then F. = f-(D): L?(S) — C>(S). For s € L*(S)
we have L?-convergence F.s — s, as can be seen by writing s = >_ sy as an L*-convergent series. Moreover
F. is self-adjoint and ||F.| is uniformly bounded by 1. Since A\f(A) = f(A)X we have F. o D = D o F. and
hence [D, F.] =0 on W1(S).

3This consideration is errornously left out in [Roe| - compare Example m
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4.4 Application: Hodge Theory
Let (M, g) be an n-dimensional closed Riemannian manifold. Recall that the de Rham cohomology of M is
Hijp(M) = H" (2" (M), d)

for the complex of differential forms QF(M) = C°°(AFT*M). Thus any class ¢ € H5(M) is represented by
a closed k-form w € QF(M) (so dw = 0).

Motivating question: What is the ‘best’ representative w for the class c?

The elements ¢ = [w] of H5,(M) = ker(d*)/im(d*~!) may be viewed as affine subspaces w + im(d*~1)
of ker(d*). To single out a representative, we demand w_L im(d*~1) using the L? inner product. This means

0= (dp,w) = (n,d*w)  Vne Q" '(M).
Our requirement is therefore equivalent to
(dw=0anddv=0)eDwv=0&Aw=0

for the Hodge-Dirac operator D = d 4+ d*. Recall that such a form w is called harmonic. The vector space
of harmonic k-forms will be denoted H*(M).

Lemma 119. Let S — M be a Dirac bundle. Then we have an orthogonal decomposition
C*(S) =ker(D) ®im (D: C*(S) = C™(9)).

Proof. We know already that we have an orthogonal decomposition

L*(S)=ker(D)o € Eig(D,))
Aea(D)\{0}

where ker(D), Eig(D, A) C C*°(S5). Write ¢ = o+ ¢ for ¢g € ker(D) and ¢ € @, (py\ 03 Eig(D, A). Since
©, o are smooth, the section @ is also smooth. We wish to find ¢ € C*°(S) with Dy = ¢.

Let ¢ = > pa for oy € Eig(D, A) with A € o(D)\ {0}. Since ¢ is smooth, the sequence ||y ||12 is rapidly
decreasing. Define ¢ = Y, +¢a. Note that || $¢allr2 € O(|A|7F) for each k, so it is rapidly decreasing which
shows that v is indeed smooth. Clearly also Dy = @. O

Corollary 120. We have QF(M) = ker(D)®im(D) for the vector space space ker(D) = H¥(M) of harmonic
k-forms, which is finite-dimensional.

As a consequence of elliptic regularity, we may now easily deduce:
Theorem 121 (Hodge Decomposition). We have an L?-orthogonal decomposition
QF(M) = H* @ im(d*~ 1) @ im(dF1)*.
Moreover, ker(d) = H* @ im(d*~1).
Proof. Since D = d + d*, the image of D: Q(M) — Q(M) is dQU(M) 4+ d*Q(M). Because of
(dn, d*w) = (ddn,w) =0

this decomposition is orthogonal and hence a direct sum. As already noted, the kernel of D are the harmonic
forms. The theorem now follows form Lemma For the last part, note that H* @ imd C kerd is trivial.
To see ker(d)_L im(d*), note that dy = 0 implies (¢, d*w) = (dp,w) = 0. O
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It follows that H*(M) is a complementary subspace of im d*~! in ker d¥. Hence the canonical map
HF (M, g) < ker(d®) — HER (M)
is an isomorphism. In particular, every cohomology class has a unique harmonic representative.
Corollary 122. dim H%,(M) < co.

Theorem 123 (Bochner). Let (M, g) be a closed oriented Riemannian manifold. Suppose Ricy > 0 and
that there exists a point p € M with Ricy(p) # 0. Then Hin(M) = 0.

This is proven on exercise sheet 7 / 2. By verifying that the Hodge star operator preserves the harmonic
forms, we see:

Corollary 124 (Poincaré duality). Let (M, g) be a closed oriented Riemannian manifold. Then the Hodge
star operator restricts to an isomorphism

x: HE(M) — HPF(M).

Hence dim HY, (M) = dim Hjz*(M).

5 Asymptotics of the Heat Kernel

5.1 The Heat Equation

Let S — M be a Dirac bundle over a closed Riemannian manifold (M, g). The heat equation is the partial
differential equation

Here we regard s as a family of sections s; € C°(S) for t > 0. It is required that s; for ¢ > 0 depends
smoothly on ¢, while the dependence at ¢ = 0 need only be continuous.

Proposition 125 (Existence and Uniqueness). Let s € C*°(S). Then there is exists a unique solution (s;)
of the heat equation with given initial condition sg.

Proof. Uniqueness. For ¢t > 0 we have

0 0
&Hstﬂz = §<st,st> = —(Dzst,st) — (st,D25t> = —2HD5,5||2 <0.

It follows that ||s¢]| < ||sol for all ¢ > 0.

Existence. Let s, = 2" (s0) = f:(D)(s0) where f;(x) = exp(—tz?). By formally taking the derivative,
this is a solution of the heat equation. More precisely,

St+h — St

h + D2St

—0 (for h = 0)
Wk

since Hw + 2% filloc — 0 and (22 f;)(D) = D?f;(D). Recall here that || f(D)|op = maxyc,(p) [f(A)]
from the general theory of functional calculus. We now consider the behavior at ¢t = 0. We have || fi(D)so —

sollwr 129 0 for all k, so that fi(D)sg — s¢ in CY. O

Remark 126. The proof of the theorem works already for so € L?*(S) and (s;) with C* in t and C? in
p € M. Such a solution of the heat equation (s;) is then automatically smooth for t > 0.
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For t > 0 the operator exp(—tD?) is a smoothing operator (exercise sheet 9/2). Hence we may write

(D" 5)(p) = /M ke(p, 0)s(q)dvol(q). (23)

for a smooth family k; € C*°(S K S*) of smoothing kernels.

Proposition 127. 1. (k;) is smooth in t and in (p,q). We have

0
P D2k, = 0.

(where we apply the Dirac operator Dy, only in p-direction.)

2. We have a C°-convergent sequence of functions of p in C°°(S)

/M Fa(p, q)s(q)dvol(q) =% s(p)

Thus k¢(p, —) 120, Op.

Proof. This is immediate by definition and Proposition [I25] To see 1., we simply differentiate under the
integral sign and since s; = [ ar kie(—,q)s(q) is a solution with initial condition sy, it converges in C° towards
sp for t — 0. O

The proposition in fact characterizes the smoothing kernel. Indeed, suppose that (K;) is a family of
smoothing kernels with properties 1. and 2. of Proposition By 1. for all t > € > 0 we have

Kis = e_(t_e)DzKEs

using a1520 the ungqueness in Proposition m By property 2. we 2hawe K.s — sin C° for ¢ — 0 and
e~ (t=e)D" _ ¢—tD in the operator norm. It follows that Ks = e *P" s for all t > 0.

5.2 Eigenvalue Growth of D

Recall from that every s € L?(S) may be decomposed s = ZAEU(D) sy into eigenvectors sy of D. We
now prove the eigenvalue growth estimate used in the proof of Proposition This estimate guarantees
that the eigenvalues of D grow sufficiently fast, so that the series considered in the proof of Proposition [I15]
indeed converges.

Proposition 128. Let N(A) be the number of eigenvalues A with modulus |\| < A, counted with multiplicity.
We find a constant C > 0, depending only on M and the rank of S, with

n(n+4)

N(A) < C- (14 A"

Proof. Let € > 0 and let {p1,...,pn} be a maximal €/2-net in M. This means that N is maximal with the
property B.2(pi) N Bej2(pj) = 0 for i # j. Then vazl B.(p;) = M (for otherwise, we could introduce a new
point  with B, /5(x) N B, /2(p;) = 0 for i). This argument also proves the existence of such nets (add new

points until the equality Ui\il B.(p;) = M holds). Since M is compact, we have:
Iro > 0,¢0 >0 V0 <7 <1 :vol(By(p)) > cor”

Here n = dim M. Hence

N
vol(M) = 3" vol(B.s(p)) = Neg (g)

=1
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and N = N, < c¢;e™" where the constant ¢; depends only on M. This is an estimate for the number of
points in a maximal &/2-net.

Let A1, -+, Ag be the first k eigenvalues, in ascending order |A1]| < |Ag| < --+ < |Ag| (repeated according
to their multiplicity). Let ¢; be the corresponding eigenvalues (chosen as an orthonormal basis of the

eigenspace, if we have a multiple eigenvalue). Let V = Zle Eig(D, \;) (the eigenspace for a multiple
eigenvalue contributes to this sum only once). We claim that for all £ < gy we have an injective map

X:V =8, @@ Spy, @ (o(p1),.-.,0(pN))-

This will then lead to an estimate dim(V) < Ntk(S). To prove this, let ¢ = > a;p; be an element of
the kernel of x. Suppose © € M and choose p; € M with d(x,p;) < e. Then, using the Cauchy-Schwarz
inequality and the compatibility of V with the metric, we get

(@) = lle@)] = lle@)l =/0 %Ilw(v(t))lldt <e|[Vellce

for some curve (t) from p; to = of length < e. Integrating over M gives
lellZe < €*[[Vellzovol(M). (24)

Forl >n/2+1 (e.g. l = (n+4)/2), the Sobolev Embedding Theorem gives an estimate ||[Vy|co < |¢]lcr <
ca||¢|lw which we estimate further using the elliptic estimate

lellw: < es (lellze + -+ [1D'@llz2) < el + A llell 22
since || D¥p||r2 < [Ae|*ll¢llzz (A is the largest eigenvalue). Putting this into we get

lellze < eas(t+ ) Vol (M) o]l 2
Ife < —1 —(1+|M])""% wesee |||z = 0. Let &

= 2c4r/vol(M) s (1 + [Ae])™

therefore shown that the map X is injective. This implies & = dim(V) < Nrk(S) which combined with
Ney <cigg"=c¢s-(1+ \)\k|) Ea proves the result. O

n+4

With this €9 we have

5.3 Asymptotics of the Heat Kernel

Recall that in R™ with the standard metric the heat kernel (also called the fundamental solution to the heat
equation) is given by

bulp.0) = s esp(—d(p.0)*/(41),

as may be verified directly by putting it into the heat equation %go + Ay = 0 (where the Laplacian is acting
on the p-variable of k;) and computing the limit limy o [, k:(p, ¢) f(q)dvolrn(q) = f(p) for a compactly
supported f € C°°(R™). On a general Riemannian manifold (M, g) we define an approximation of the heat
kernel by the same formula (“Euclidean heat kernel”)

(p.0) = a7 exp(=dlp. 0/ (40).

using now the geodesic distance d on M. The maps h; are defined for ¢ > 0 and are smooth in a neighborhood
of points (p, q) of the diagonal in M x M. We wish to approximate the actual heat kernel k; in terms of hs.

We begin by computing (% + A)hi(—, q) where now A = d*d is the connection Laplacian (also called
Laplace-Beltrami operator on C*°(M), the smooth real valued functions on M. Fix ¢ € M and consider
hy = hgq) = h¢(—, q) in local geodesic normal coordinates (x!,...,2") around q. Let r? = (2!)2 +- .-+ (2™)2.
Then

hu(=10) = exp(~1/ (41).

(4mt)
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Lemma 129. We have (& + A) hy(—,q) = %g;’q)% for g = det (gi;(—))-

Proof. Let A = V*V be the connection Laplacian on functions. First, for the gradient (identifying T*M =

TM) we find

h
Vh, = 72—;7’&

SO
r 8ht

2t or
where we use that V*(fX) = fV*(X) — df(X) for f € C®(M),X € C>*°(TM). Using we find

h
Ah; = —?;V*(r&«) = (25)
1
V9
where we use 0, = r~1279;. Putting this into (25) gives

My r dg r Ohy
Ahe = 2t (—n— 2g 8r> * 2t Or

_ e, 09\ _rh
2t " 2¢g Or 4t2

Ohy -n 72
— ==+ =) he O
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Keeping ¢ fixed, we now make the following formal ansatz for the actual heat kernel k;:

ki(p,q) = he(p,q) (©o(p. q) +tO1(p, q) + ?O2(p, @) + -+ ), (26)

where ©; € C*°(SX S*) for j = 0,1,.... We have the following product rule for the square of the Dirac
operator from [Roe, Lemma 7.13], which can be derived using synchronous orthonormal frames.

r dg

9(a? \/g) = —n — ~-2

V*(ro,) = —=div(ro,) = — 29 Or

On the other hand,

Lemma 130. For h € C*(M) and s € C*(S) we have
D?(h-s) = hD*s + (Ah) - s — 2Vyps.

Combining the lemma with the above calculations for A, we then get for s € C°°(SX Sy) (note that for
fixed v € S, this is just a smooth section of .S)

0 2 - 0 9 rhtag ht *
(at—i—D)(ht s)—ht<6t+D>s+4gtars+tvrars. *)

Now formally write s = ug + tus + t>uz + ... where u;(p) = ugq) (p) == O;(p, q). For s = t*u; the right-hand
side of (¥*) is

o , r g . i
It <]t7 Yuj +t/ D?uj + @Etj Yuj + ¢ 1V,.5Tuj>
For s = t/~!u;_; the right-hand side of (*) is
. ) i—112 r dg j—2 j—2
h (] — 1)t Uj—1 + 77 Dy + @Et uj—1 +t77 Vg, 11

The coefficients of the terms with exponent 7~ sum up to

9 . r dg
D u;_1 + Vygruj + <J + 4987“) Uj
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If k; is a solution to the heat equation, these should all vanish. Beginning with u_; = 0 we get a recursive
system of coefficients. A system of solutions (u;) then gives a formal candidate ki = hy(ug + tug +t2us +. . .)
for the heat kernel. We therefore turn to the question of solving recursively the ordinary differential equations

r 0
DQUj_l + VTaruj + < 4 ag) =0 (**)

Introduce the ‘integrating factor’ 77¢g'/4. Given u;_;, a solution u; of (**) needs to satisfy

, 0
Vo, (,’,jgl/4uj) —jT] 191/4u +7,g —3/489u 4 1/4V8 uj

17

; ) r Og
= i lgl/4 <juj +—

19 —uj + Vya, uJ)

o j=0
| =g 4D, (5 > 0).

We solve this equation for u;(r) € C>°(S, X S;) = End(S,) (the identification uses parallel transport along
a radial geodesic from ¢ to p) on geodesic rays, beginning at ¢. The solution for the first such equation is
rogl/4u0 = const

for some constant, for which we choose idgs. For the higher solutions u; we must take
r *1/4/ P g (p)Du;_1dp € C(S®S]). (27)

(the integration constant zero is determined by the requirement that u; extends to a smooth function at
r = 0.) Note that each u; is only defined in a neighborhood of the diagonal in M x M.

We have thus shown:

Proposition 131. For ©,(p,q) = ugq) (p) we have a (formal) solution

itj@j(*
=0

of the heat equation for p close to q and t > 0. With the requirement ©¢(q,q) = ids, for all ¢ € M the
sequence (0;) of smooth sections in C>°(S W S*) (which is defined in a neighborhood of the diagonal in
M x M) is uniquely determined. The functions ©; depend only on g and the covariant derivative Ve and
can (in principle) be determined recursively by solving the above ordinary differential equation.

What is the relationship with the actual solution k;(—, ¢) of the heat equation? We claim that it is an
asymptotic development of the heat kernel: the ¢-th partial sum

14

ki(p,q) = he(p,q) | D_t70;(p,q)

=0

has the following property: For all v,m > 0 there exists ¢(v,m) so that for all £ > ¢(v,m) we have the
following estimate for the maximum norm of (at most) m-th derivates

Hkt(pa k[ P7 ||CnL < CZ,V,m|t|V
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for small [¢| and some constant Cy ,, ,,. We may thus view the sequence (kf),>o as a sort of Taylor expansion
of the heat kernel. But note that we are not claiming (as little as for usual Taylor expansions of smooth
functions R — R) that for ¢ > 0 this sequence is convergent in C*°(S X S*).

We will henceforth write

oo
he Y 110,20k
j=0

for this asymptotic behavior.

In the following we extend all ©; arbitrarily to smooth sections in C*°(S K S*) defined on the whole of
M x M. In particular the partial sums kf € C°°(S K S*) are defined on M x M. We will prove the above
estimates ||k, — k;f”cm < Crumltl”, [t| < |tol, for these extended kf. We will see later that the essential
information of the asymptotic development of the heat kernel is in fact determined by the ©; around the
diagonal of M x M, but for the following computation it is convenient to have k! defined on the whole of
M x M.

For the proof of the asymptotic behavior of kf we examine to what extent kf enjoys the characteristic
properties of a heat kernel. This is done in two steps.

1) kf(p,—) = dp, uniformly in p.

Proof: For fixed p we split the relevant integral into two parts, over a ball B,.(p) of (small) radius r, and its
complement

£ S VO. = KS VO ZS VO
/M ki (p, ¢)s(q)dvol(q) /B " kys(g)dvol(q) + / kis(g)dvol(q)

M\ B, (p)

t—0

—0
where we use the fact that for p # ¢ the heat kernel hi(p, q) is rapidly decreasing for ¢ — 0. For the first
summand we get

)4
/ = s VO . ) Jg vo
/Br(p) ki s(q)dvol(q) _/BT(@ he(p, 4)O0(p, q)s(q)d l(q)+;/3 ( )h (P, 0)0;(p, @)’ s(g)dvol(q)

t—0 t—0

—s(p)+O(r) —0
using the above calculation ©q(p, ¢) = id+O(||p — ¢||) € Hom(S,, Sp) and the fact that the Euclidean heat
kernel h;(p, —) converges to 6, for t — 0. Letting r go to zero shows the claim.
2) (&4 D?)kf — t’hief  near the diagonal, for some ef € C>(S X S*),

Voot b ht%% outside a neighborhood of the diagonal, for some v, € C*°(S X S*), by (*).
For { > v+k+n/2 we have t 7 (t‘hef) — 0 in C* for t — 0. Moreover, = (+hyy;) — 0in C* for ¢ — 0 since
h¢ is rapidly decreasing outside a neighborhood of the diagonal. In any case, we have shown Vv, k 3¢(v, k)
so that for all £ > ¢(v, k) we may write

a 17 v
(55 + ) # = t.0) < Ol
for ry € C°(S X S*), ro = 0, and r; is continuous in ¢ > 0 for the C*-topology.

Now consider sf (—,q) =k — kf . The left hand side is a solution of the inhomogenous heat equation

0]
(815 + D2) st = —t"ri(—,q) =: 84, so = 0.
On the other hand, such a solution s; may always be written s; = fg e—(t=m)D? S,dr. Since kf + s — 6, for
t — 0 as shown in part 1.) and by the uniqueness of solutions of the (homogenous) heat equation (which is
solved by kf + s;), we get

ki (p,q) + s¢(p,q) = ke(p, ).
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Also, since 7 — 0 for ¢ — 0 in the C*-maximum norm, and hence in the W*-Sobolev norm, we have
Isellwe <t- Cr-sup{[|3-[lwe |0 <7 <t} < Cp e+

because e~ (=P is bounded in all Sobolev norms. By the Sobolev Embedding Theorem we finally conclude
llsellom < [t]YF2 for |t| < to for k > m + n/2 finishing the proof of the asymptotic behavior of kf.

We now determine the first ©;. Recall that we work in normal coordinates centered to ¢, which is held
fixed. We have already seen that O¢(p,q): S; — Sp is given by parallel transport along the geodesic ray
from ¢ to p and then multiplying with the factor g=*/4(p) (recall that g(p) = det(g;;(p)). To put this into
a formula, we work in the following frame. Let (fi,..., fq) by an orthonormal basis of S,. We may extend
these along geodesic rays emanating at ¢ to get an orthonormal frame f;(p) on our chart neighborhood.
Then

u§?(p) = ©o(p, q) (v £;(g) = g~ /4P f;(p), ) €R. (28)
Recall from our earlier discussion that
1 _ s
w(r) = ——g 1/4(7‘)/ 9" (p)D?uq dp.
0

Hence 01(q,q) = u1(0) = —(D?up)(0). It remains to compute D?ug. For fixed ¢ and v = v7 f;(q) € S, we
may view ug(v) as a section s € C°(S) by s(p) = O¢(p, q)v. Applying Lemma to we get

D>s(q) = v/ (g7 /D*(£) + Alg™) - fy = 2Veyual; )| (29)

The covariant derivatives of f; all vanish in g, so the last term is zero. By the Weitzenbdck formula
(Theorem we have

D(f;)(a) = K(a)(f;),
because A(f;)(q) = —>_, Va,,0,(f;) = 0 (note that Vy, f; is constantly zero along the coordinate axis z’
by construction of f;).
Moreover, in normal coordinates from @ we get
_ U k.l 3
g = det(g;;) = 1 — gRicu(g)z"z" +O()
SO )
g V=14 ERickl(q)xkacl +0(r%).
This gives
—1/4 ik —1/4 1
Alg (@) == 5507 "(g) = —scaly (9).
Here we recall that by equation the laplacian of a function f: M — R in local coordinates around g is
given by
Of
kj ZJ_
0u(v30" 51)

1/4

1
V9
so that the calculation is justified by the expansion of g~
9" (q) = oM.
Now we have evaluated all terms in (29). In summary,

A(f) = —div(gradf) =

around ¢ stated above and the fact that

ui(0) = ~D?s(q) = gscaly (q)ids, ~ K(g)

Example 132. In the special case S = A*T* M we know that D? = d*d +dd* is the Hodge Laplacian, which
restricted to C*°(M) is the usual Laplace-Beltrami operator A and

: 1 :
GO(qa q) = ldSq7 @1(q7 q) = éscalg(Q) ldsq N

Neat, on C°°(AYT* M) we have O¢(q,q) = id, ©1(q,q) = gscaly(q) — Re(q) for the Ricci endomorphism.
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5.4 Spectral Geometry

Let
0< <A<

be the eigenvalues of D?, counted with multiplicity. We define the trace of e~*" ® as
2 oo
tr(e”tP7) := Ze‘”‘i.
=0
Using Exercise sheet 11 we have the equality

3 et = r(ky VO .
> /Muk (p,p))dvol(p) (30)

with the heat kernel (k;) of e~*P . Using the asymptotic expansion of k; and noting that for the Euclidean

heat kernel we have hy(p,p) = W we obtain
_¢D?\ t>0 1 G
(e ) 'R e S0 [ (@, vl (31)
3=0

In the special case of the Laplace-Beltrami operator A on C*°(M) the previous computation implies

00 —tx; t—=0 # 1 . ,
;e (4rt)n/2 (VOI(M )t 5 /M scalg (p)dvol(p) - t + O(t )).

It follows that the spectrum of A determines the dimension n, the volume and the total scalar curvature of
M.

The spectrum of A does not determine M up to isometry! Indeed there exist non-isometric manifolds
(M,g) and (M',¢') which are isospectral, i.e. whose Laplacians have identical eigenvalues, counted with
multiplicity. The first such examples are due to Milnor, see also Mark Kac’s article: “Can one hear the
shape of a drum?” and the corresponding Wikipedia article. The question which properties of (M, g) are
determined by the spectrum of the Laplace operator is treated by the subject called spectral geometry. In
physical language one asks which properties of a (geometric) object are determined by the spectrum of its
emitted radiation.

Remark 133. For the Laplace-Beltrami operator A on C°°(M) the number of eigenvalues N(A) less than

A is given asymptotically by N(A) ~ WVOI(M)A”/2 (this means that the quotient converges to

1). This famous result, which sharpens our Proposition is called Weyl asymptotics.

6 The Index Theorem

6.1 The Index of Graded Dirac Operators

Let (M",g) be a compact Riemannian manifold equipped with a Dirac bundle (S,V®) — M (real or
complex). Recall from Definition [31| that the corresponding Dirac operator D: C*°(S) — C°°(S) is given by

n

D(s) = e Ve,(s)

i=1
for a (local) orthonormal frame e; of TM.

Definition 134. A Z/2-grading on S is a bundle endomorphism e: S — S satisfying
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1. €2 =1id, this means € is an involution.
e 1is self-adjoint, that is, (£s1,82) = (s1,£82) for s1,82 € Sy, © € M.

e anti-commutes with Clifford-multiplication, so e(v-s) = —v-e(s) for v e C®(TM) and s € C*°(S).

e is parallel, i.e., we have V5 (es) = (V5s)

Given such a grading we get an orthogonal decomposition S = S, @ S_ into (£1)-eigenspaces of ¢ (here
we use 1. and 2.). The Dirac operator restricts maps Dy : C*°(S4) — C°(S%), by 3. and 4. Conversely, such
an orthogonal decomposition S = S @ .S_ defines a Z/2-grading, provided the connection preserves each of
the bundles S1 and Clifford multiplication exchanges S; and S_. The map ¢ is then given by ¢|s, = £id.
For this decomposition the Dirac operator splits as

0 D_
D= ( D, o > . (32)
In particular, D% = D_ are adjoints of each other. Moreover, ker(D) = ker(Dy) @ ker(D_) which is an
orthogonal decomposition into finite-dimensional subspaces ker(Dy) C C*(S41).

Example 135. 1. Let S = A*(T*M). Recall from that the corresponding Dirac operator is the
deRham operator D = d+d*: Q*(M) — Q*(M), using the notation Q*(M) = @, Q*(M) and Q*(M) =
C® (M, N*(T*M)). On the Dirac bundle S we define e(w) = (—1)48w so that
Sy = P AHI M), S_= P AT M)

k even k odd
The corresponding Dirac operator D : Q¢ (M) — Q°44(M) is called the Euler operator.

2. Let S = A*(T*M)®C. We then again have a grading S = A°° © A as in the last ezample. However,
there exists a second grading when dim M = n is even and M is oriented.

For an orthonormal frame (e1, ..., ey) of T M the volume element is given byw = ey - - - e, € C°(CHTM))
(exercise sheet 3/2). Note that this defined a global form on M because M is oriented. Recall also
w? = (—1)n(n2+1) and vw = (=1)""twv for v e C®(TM).

We now define a grading by £(s) = i™w - s, where m = n/2. This is a grading since €2 =1 and since
Clifford multiplication with w is self-adjoint (as n is even). We have

k(k—1)
2

ws = (—1) * (s), se A*T*M ® C.

This follows since v-s =v A s — 1,8 (Proposition :

n(n—1)

61"'€n'(61/\"'/\ek):(71)T6n"'61(61/\"'/\6k)

n(n—1) n(n—1) (n—k)(n—k—1)
= (D) e e 1= (1) (D) T e

n(n—1)+2k+(n—k)(n—k—1) k(k—1)
=(-1) :

epr1 A Nep=(=1)"2 x(eg A---Aeg)
The corresponding Dirac operator D = d + d*: C*(S;) — C(S_) is called the signature operator
(so the bundles S+ are the +1-eigenbundles of the operator e = i™HFk=1)y),

3. Let (M?™="_g) be a spin manifold with corresponding spinor bundle S — M. Recall that this bundle is
associated to the complex representation A of C1(2m) (ewercise sheet 5/3), i.e. S = Popin(M) X spin(n) A-
We recall that when restricted to Spin(2m) this representation splits into the (only) two irreducible
representations A = Ay & A_. Clifford multiplication v € R™ interchanges Ay. Hence

S = S+ (&) S_, Si = PSpin(M) X Spin(n) Ai

and we obtain a corresponding Dirac operator Dy : C®(Sx) — C*(Sx). This is the so-called spinor
Dirac operator, also called Atiyah-Singer operator, compare the end of Section[3
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Definition 136. Let S =S, & S_ — M be Z/2-graded Dirac bundle with corresponding Dirac operator D.
The index of D 1is defined as
ind(D) = dimker D, — dimker D_ € Z.

(taking the real or complex dimension, according to the case at hand.) Recall here that by elliptic reqularity
these kernels are finite-dimensional.

Remark 137. Note that the index is equal to dimker(D,) — dimker(D7%). Without grading, the index
dim ker(D) — dim ker(D*) would automatically vanish, since D is self-adjoint.

Example 138. 1. For the Euler operator we have Sy = Q°V, S_ = Q°% and D = d + d*. It follows that
ker Dy = @, .yon H¥(M) are the even harmonic forms on M. Hence ker Dy = HS$%(M) by Hodge
theory. Similarly, ker D_ = HS%(M). Hence we obtain the Euler characteristic as index

ind(D) = dim H®’(M) — dim H°%(M) = x(M).
This is a purely topological invariant of M, in particular it is independent of the metric.
2. For the signature operator on an oriented 41 = 2m = n-dimensional manifold we have
e = imHRE=D AR(T*M) @ C — A" *(T*M) @ C
Consider 0 < k < n with k # n/2. We consider ¢ on (a, 8) € A¥ ® A"~*. Because ¢ = 1, we have
ela,B) = (a,f) & ca=p.
Hence ker (D4 |pargan—k) = {w € Q¥ (M) @ C | (d + d*)w = 0} = H*(M;C) since * preserves harmonic
forms (given w € H*(M;C), the element (w,*w) € ker (D4 |zngan—r) lies in the kernel). Similarly,
ker (D_|pxgan—+) = HF(M;C). It follows that
ind(D) = dimker D |pm — dimker D_|pm

is concentrated in the middle dimension m. For w € Q™ we have ew = ™™= x = xw since m
is even. Hence ker Dy|am = {w € H™(M) | xw = fw} is given by (anti)-self-dual forms. These are
related to the signature of M, defined as the signature of the non-degenerate symmetric bilinear form

P (o, B) — alB

M

(exercise sheet 10/4). In a suitable basis, ¢ takes the form

E. 0
¢:<0 —ES>

and the signature of M is r —s. Now for a self-dual w € H'(M) with ||w| = 1 we have

/w/\*w:/ (w,w)dvol = 1,
M M

using the definition of the Hodge operator (Definition . Similarly, ¥(w,w) = —1 for a harmonic
anti-self-dual form. Hence the index is the signature

ind(D) = dim H" (M) — dim H™ (M) = sign(M),

which is again a purely topological invariant.
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3. For the spinor Dirac operator, what is ind(D)? Is it also a topological quantity, as in the previous
two examples? The answer is yes. Indeed, the Atiyah-Singer Index Theorem (Atiyah-Singer, 1968)
expresses ind(D) in terms of topological quantities (for any Dirac operator D). It was first proven
using topological K-theory and later (Atiyah-Bott-Patodi, 1973) by using the asymptotics of the heat
kernel, which is the approach we shall follow.

Given a general Dirac operator Dy: C*(S1) — C*(S¢), we consider D2 := D_ o D : C>®(5;) —
C>(S,) and similarly D?> = Dy o D_: C*(S_) — C*°(S_). Hence
D?* =D ® D%: C™(S4) ® C™®(S-) — C™(S4) ® C=(5-).

The eigenspace decomposition of D? induces corresponding eigenspace decompositions for Di,D% (note

that the grading operator ¢ commutes with D?):
Eig(D? \) = Eig(D3, \) ® Eig(D2, \).

For A\ = 0, we have Dis = 0 precisely when Dys = 0. The non-trivial implication follows from 0 =
(D%s,s) = (Dys,Dys). Hence
Eig(D31,0) = ker D3 = ker Dy (33)

We know that all eigenvalues A of D? are non-negative. We have already considered the case A = 0, so
suppose A > 0. The operator D, induces a map

Dy : Eig(D%, ) — Eig(D?, ) (34)
since D2 D (s) = DyD_D,(s) = Dy D% (s) = AN(Dys) for s € Eig(D%, \). Similarly,
D_: Eig(D?,\) — Eig(D2, \). (35)
The composition of with is just multiplication by A: Eig(D2,\) — Eig(D?, \). It follows that
Eig(D?%,)\) = Eig(D2, \).

Definition 139. We define

2 +
tre tPx .= E e N

\E

as the trace of the operators e DI, (Note that the right hand side is absolutely convergent). The super trace
of the Z./2-graded operator D? is defined as

tD? —tD?

2
tb + —tre -

trg e =tre

Note that by the trace of e=tP” is tre~tP” = tre P + tre~*P2 . In this respect the supertrace is
a Z/2-graded version of the absolute trace.

Corollary 140. Let 0 < )\ar < )\f < -ovand 0 < Ay < A7 < - be the eigenvalues of Di and D?
respectively. All non-zero eigenvalues agree and occur with the same multiplicity (the multiplicity of the
eigenvalue zero may differ). Together with we obtain the McKean-Singer formula (1967)

trge 2" = tre 1Pt _retPY = Z et — Z e~ =dimker D, — dimker D_ = ind(D).
AF A7

tD

Recall that e~*2” is the time evolution operator for the heat equation, so that s, = e~ 250 is a solution

of the heat equation with initial condition sg.
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For t — oo the operator e~ *P 2 converges towards the projection onto the kernels of D3 (in the operator

t

norm for L?). Indeed, applying functional calculus to D? and the function e~ »* shows that only the non-zero

eigenvalues survive in the (time) limit under the heat evolution. Hence

trg e tP

2 t—oo
— T Mgy D?F — b0 ey D?
for the orthogonal projections m ongo the kernels.
We know already that trge " is constant in ¢! The information for ¢ — 0 is also interesting. From
and we have an asymptotic expansion for ¢ — 0

—tD? _ 1 —
trge = /M trs ki (p, p)dvol(p) ~ W j;o ! /M trs ©;(p, p)dvol(p).

Note that by construction of the asymptotic development of the heat kernel in Section (by iteratively
solving ODE’s for the functions u;) each of the endomorphisms ©,(p, p) : S, — S, respects the decomposition
into positive and negative parts. Also recall that this integrand is determined by the local geometry of
M around p. Since trge~P" is constant in t, we get (n even) that ind(D) is simply the constant term
W Jos tr5 O 2(p, p)dvol(p) in the Taylor expansion.

Theorem 141. [Atiyah-Singer Index Theorem, First Version] For n odd, we have ind(D) = 0. For n even,

nd(D) = 7 | s @upalp.p)avol). (36)

It remains to compute the integral on the right. We know that ©,,/2(p) = ©,,/2(p, p) only depends on
g,V* around p, but their explicit computation is difficult. They will be treated later using Getzler calculus.

Corollary 142 (Homotopy Invariance). Let (gt):eo,1] be a smooth family of Riemannian metrics on M.
Let (St, Vi) = M be a corresponding family of 7/2-graded Dirac bundles. Then ind(Dy) = ind(D).

Proof. The integral in depends continuously on ¢ and is also the integer ind(D;). Hence it is constant. [

Remark 143. This homotopy invariance of the index was observed by Gel’fand in 1959. He then heuristically
argued that the index should only depend on topological data (and in particular is independent of the metric
g). The explicit computation of the index was called the ‘index problem’ and was solved by Atiyah-Singer.

Corollary 144 (Multiplicity for Coverings). Let S — M be a Dirac bundle and suppose m: M' — M is a
d-sheeted covering. Then S’ = n*S — M’ is again a Dirac bundle. The index of the Dirac operator D' on
S’ is then given by

ind(D') = d - ind(D)

Example 145. Forn = 2 let (M?,g) be a closed oriented Riemann surface. Let D be the Euler operator.
Recall that S; = A“(T*M) =R @R and S_ = A (M) = AY(T*M). Hence
d+d* = Dy: C®(M)®C>®(M) — QY (M).

By (36)),

. 1

X(1) =i0d(D) = - [ tr5 @1(p)avol(p)
T JM

for the operator ©1(p): AT M — A*TxM whose restriction to ANTyM — ANTrM we denote by e’ (p).

The right hand side is
1

— (tr©f — tr O] + tr ©7) dvol(p)
47 M
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Identifying Q*(M) = C°° (M), the Laplace-Beltrami D* = dd*+d*d: C®(M)®C>® (M) — C(M)®C>®(M)
restricts to the Laplace operator on functions. Recall from Ezample that

O(p) = gscaly(p) = O3(p),  OL(p) = gscaly(p) — Relp)

The traces of ©9(p) = ©%(p) = gscaly(p) agree, while (note that Sy has rank two)

1
trO(p) = gscalg(p) — scaly (p).

Hence we obtain the Gaul-Bonnet Theorem

1 1 1 1
M)=— —scal — —scal scal l(p) = — scal |
X(M) = 1= [ Zscal, (o) = Fscal, () + sl (p)avol(p) = o= [ scaly (p)avol(p)

which therefore turns out to be a special case of the Atiyah-Singer Index Theorem.

6.2 The Getzler Filtration

We return now to the general theory, where we are given a complex Z/2-graded Dirac bundle Sy — Mn"=2m
and corresponding Dirac operator Dy : C*(S1) — C*(Sx). To make more useful, it remains to
understand ©,,/5 and the right hand side in more detail. This will enable us to prove the following main
theorem of this course:

Theorem 146 (Atiyah-Singer Index Theorem). Assume that the grading operator € on S is the canonical
grading, given by multiplication with i™w (see the next section). Then we may calculate the index as

ind(D) = /N ) A(TM) A ch(S/A).

Here, A(TM) and ch(S/A) are differential forms that depend only on the curvature of M and S, respectively
(defined below). Via Chern-Weil theory the integral expression on the right can be expressed in terms of
characteristic classes of TM and S.

For more general gradings on S, a similar formula holds (see Exercise sheet 14).

Recall that ©; was defined in as the asymptotic correction terms for the heat kernel on M, as
compared to the heat kernel on the torus. Keeping ¢ fixed, ©; can be computed recursively via solutions
uj = 0;(—, q) of the ordinary differential equation

Va/ar(rjgl/‘luj) = —Tj_lgl/‘lDzuj,l7 u_1 = 0. (37)

(see the proof of Lemma )

6.2.1 Clifford Representations
The following decomposition of an endomorphism is crucial for the Getzler calculus.

Lemma 147. Let W be a complex representation of Cl(n). Then
End¢(W) = Cl(n) ® Endc(W). (38)

Proof. Recall from that the complexified Clifford algebra Cl(n) & C2?"*2"™ is a matrix algebra and there-
fore has a unique irreducible representation A = C2". If W is another faithful complex Cl(n)-representation
W we may therefore write W = A ®¢ V (so we take dim V' many copies of A), where

W/A =V = HomCI(n)(A, W)
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This follows from Schur’s Lemma,
HomCl(n)(A? A) =C (39)

It is a special case of the isotypical decomposition of a representation. From this we get

El’ld(c(W) = El’ld(c(A) Rc End(c(V) = (Cl(n) Rc End(c(V) = Cl(n) Rr End(c(V) (40)
Similarly, Endci(n) (W) = Endgi(n)(A) ® Ende(V) = Ende (V) by (89). O

The next proposition is also fundamental for the proof of the Atiyah-Singer Index Theorem. It implies
that in evaluating the integral , we need only concentrate on those parts with highest “Clifford degree”.

Proposition 148. Let W be a complex Clifford representation of Cl(n) for m even, let F = ¢® f €
Endc(W) = Cl(n) ® Endc (V) (using the above decomposition), and let ¢ =) crer. Then

trg F' = (=20)" ¢y ptr f = (=20)" ¢y tr W/A(F). (41)

.....

(Using the canonical isomorphism W = A ®@c V', the Z/2-grading defines a grading on W. The super-trace
of the endomorphism F of W is with respect to this grading.)

Proof. Viewing elements of Cl(n) = Endc(A) as endomorphisms of A, we haveﬂ
tr F'=tre-trf. (42)
On A we have a canonical Z/2-grading given by ¢ = i"™w for the volume element w =e; - - - e,,. Then
W=(AreV)e(A_oV)
defines Z/2-grading on W. Similar to we then find for the super trace of F' € Endc (W)
trg F =trgc-trf.
It remains only to prove the following lemma. O

_____ n} CI €1 € Cl(n) where ef =[], e for the standard basis e; of R™=2" gnd
cr € R. Then, regarding ¢ € End(A), we have

trs (c) = (—=2i)"cq1,..n}- (coefficient of the top part of c)

Proof. For ¢ = e we have
trg (¢) =tr(eoc) = tr (i"™we)

and

e — (=1)™i™ for I ={1,...,n} (recall w? = (—=1)™)
"7 1 ey for I #{1,...,n} (for some A € C and J # () complementary to J)

Since ey = id: A — A, we have tr(ey) = 2™. However, for I # () we get tr(ey) = 0. This is because
End(A) = A® A* and e acts on both A and End(A) by left multiplication on A. Let us denote the action
of ey on End(A) by ;. Then, as dim A* = 2™,

tr (ey) = 2imtr (er).

But e is left-multiplication on Cl(n) = End(A) and permutes the basis e;, ---e;, (up to scalars) without
fixing any basis vector as I # ). Hence it has trace equal to zero. O

4More generally, tr (A® B) = tr (A) -tr (B) for endomorphisms A € End(V), B € End(W) of finite-dimensional vector spaces
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6.2.2 Taylor Expansion

Let V be a finite-dimensional vector space. Recall that C[V] is the C-algebra of formal power series in
elements of V' and coefficients in C. More formally, C[V] is the quotient of the tensor algebra TV by the
ideal generated by v @ w —w ® v for v,w € V. It is the free commutative C-algebra generated by V.

Definition 150. Let s € C°°(S X S*). Firing q we get a section s, = s(—,q) of the bundle S® S};. For p
close to q we may use parallel transport along the geodesic from q to p to identify this bundle with the trivial
bundle End(S,). Precomposing with the exponential map gives (defined in a neighborhood of zero)

exp

T,M =25 M 2% End(S,)

which is a smooth map of finite-dimensional vector spaces. The Taylor expansion of this map is an element
of C[T;M] @ End(S,). In more detail, if we choose normal coordinates (x') centered at q (so choosing an
orthonormal basis of T, M), this is just the ordinary Taylor expansion of a vector-valued map Sy: R™ —
End(S,). We write this asymptotic expansion as

Sq ~ Zsaxa, ¥ =z, sq € End(Sy) (43)
[0
for
1 olels,
a — 0
s aplcap! Oxe

Letting q vary, Taylor expansion clearly defines a section 7(s) of C[T*M] & End(S).

Remark 151. 1. We have used the short-hand notation x* = dx*. Then the right-hand side of
defines an element of C[T; M] @ End(S,).

2. s(q,q) is the constant term 7(s)(q)o of the Taylor expansion.
3. As familiar from calculus, the Taylor expansion needn’t converge or represent our function.

4. Working in arbitrary coordinates, higher derivatives of functions are usually not well-defined (leading
to jet bundles). In the context of Riemannian manifolds, we may use normal coordinates at q which
are well-defined up to a linear transformation. Then higher derivatives are well-defined.

As an endomorphism of S, it can be written in the form so = >_, ¢, ® f, € End(S;) as in Proposition
so trs so = »_, trs (cu) - tr (fy), where trsc, was computed by looking at the coefficient of the top Clifford
part of ¢, € Cl(T, M) (at least if S, carries the canonical grading).

Plan: Develop a calculus that assigns simpler objects to sections in C*°(S X S*) (viewed as smoothing
kernels of smoothing operators C°(S) — C>°(S)) and also to differential operators C*°(S) — C>(S).
These simpler objects should have a ‘degree’. Clifford multiplication with v € T, M should raise the degree
by 1, while multiplication with a coordinate function x* should lower the degree by 1 (in a sense to be made
precise). To compute the trace it suffices then to consider the contribution in top degree n = dim M. This
assignment should be compatible with the composition of differential operators with smoothing operators:
For a differential operator P € D(S) and a smoothing operator Q: C*°(S) — C°°(S) with smoothing kernel
s, i.e.

Q)(p) = /M 5(p, 9)o(a)da,

recall that the composite Po@ is the smoothing operator with kernel P,s(-, -) where P, denotes the differential
operator P acting only on the p-entry of s.
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6.2.3 Filtered Algebras and Symbol Maps

We start with the differential operators. Recall that D(S) is the algebra of differential operators C*(S) —
C°(S). Recall our traditional filtration

D(S)D -+ D D(S) D Dr-1(S) D -+ D Dp(S) = End(S5).
by differential operators Dy (S) of order up to k.

We recall the following general definition:

Definition 152. A filtered algebra is an algebra A with a sequence of vector subspaces Ay satisfying
A D Ap_1, Ap - Ap C Agqy, UAk = A

On every filtered algebra we have the order function f: A — Z U {—oo}, f(z) = min{k € Z | x € Ax}.
The order function satisfies

flz+y) <max(f(2), f(y), flz-y) < fl@)+fy), [(0)=—o0, [f(Az)< [f(z)

for z,y € A and A € C. Conversely, given a function f: A — ZU{—oo} on A with these properties, we may
define a filtration by
A, ={z € A] f(x) < k}.

We shall also write A<y, for Ay. Thus, order functions and filtrations are equivalent points of view. For us,
the main example of a filtered algebra will be the differential operators A = D(S).

Definition 153. 1. The trivial filtration on V is given by Vi, =V for all k.

2. Let Vi, D Vi1 and W; D Wi_y be filtrations of V. and W. Then (V@ W), = ®k+l=n Vi @ W, defines
the tensor product filtration of V @ W.

3. If f+ W — V is a homomorphism and V is filtered, then Wy, = f~1(V4,) defines the pullback filtration
on W.

Definition 154. A graded algebra is an algebra A with a decomposition A = @ A™ into vector subspaces
satisfying A™ - A™ C A™T™ for the product.

We take it as a convention that upper indices denote a grading, while lower indices denote a filtration.
Any graded algebra may be regarded as filtered, by A<y = €D, A, There is also an obvious grading on
the tensor product of graded algebras. We call an algebra trivially graded if A = A is only in degree zero.

Definition 155. Let A,, be a filtered algebra. A symbol map consists of a graded C-algebra G* = GG 1 ®- - -
and a family of linear maps o, : Am — G™ with the following properties:

1 oply, =0
2. om(a) - o (a') = Opmime(aa’) fora € Ay, a' € Ay

Example 156. 1. Let G™ = A, /Am—1 with the projection op,: Ay — G™, the universal symbol. The
graded algebra @mZO g™ s called the associated graded algebra of the filtered algebra A.

2. A=Cl(n) and A,, = Span{e; | |[I| < m}. The associated graded algebra G™ = A, [Am—1 is isomorphic
to the exterior algebra G* = A*R™. Here, for example, oo maps the Clifford product v - w to v A w,
compare Proposition .
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6.2.4 The Principal Symbol

Definition 157. For vector bundles E,F — M let P € D,,,(E, F) be a differential operator of order < m.
Let & € T M be a cotangent vector and let f: M — R be a smooth function with f(x) =0 and df (x) = &.
We define the principal symbol of P with respect to £ as the linear map o, (P,€) : E, — F, given by

om(P,€)(e) == %P(fmé)z €F, ccE,.

Here é € C*°(E) is an extension of e to a smooth section.

We need to show that this is well-defined. For this, let (z!,...,2™) be local coordinates near x and write
€ = Gdat € T M. Write P =Y, <, A(2) geloge. Then
—= 1 n

U al<m

f@=0 1 alel(fm)
p— —_— Aa .
m! cqz_:m @) ot onn (@)-e

= > A (x) e
|a]=m

Obviously, the right-hand side is independent of € and f. On the other hand, our definition is independent
of the representation of the differential operator P in local coordinates. Hence the symbol is independent of
both.

Remark 158. Let us think about the variance of this expression under coordinate change. From the coordi-
nates (z*,...,2") we get a frame (d1,...,0,) of To M whose coordinates (n',...,n"), viewed as linear maps
T.M — R, are equal to the cotangent vectors n* = dx'. Similarly, the frame (dx',... dz") of T:M leads
to coordinates (&1, . ..,&,) which, when viewed as linear maps T M — R, may be identified with & = 0; (by
identifying the double dual of a vector space with the vector space itself). Hence the entries &; in the above
expression for the symbol, viewed as linear maps Ti M — R, & — &(&), can be identified with 0; € T, M.

Hence, identifying &; = 9;, we may view the m-th principal symbol map as a section (cf. [Roe|)
o(P) € C*(C[TM]@ Hom(E, F)),  o(P)(e):= »_ 0Of'-- 05" A -e,
|a]=m

where C[V] = @,,5¢ Sym™(V), where Sym™ (V) C V®™ are the symmetric tensors (meaning that they
are invariant under the obvious action of the symmetric group %,, on V™), or in other words, formal
homogenous polynomials in elements of V' of degree m.

Example 159. Consider d: Q*(M) — Q¥L(M), som = 1. Let £ = &da' € TYM. For w € AFT} M
extended to a k-form on M we have

o(d, €)w = d(fw)]z = (df Aw + fdw)ls "L € Aw.

6.2.5 The Getzler Filtration
Let S — M be a complex Dirac bundle. From Equation [0] we have an isomorphism
Endc(S) = CI(TM) & End01(TM)(S),

which will be used to define a filtration on End¢(.S).

Recall from Proposition [20| that the Clifford algebra is filtered by C1®) (V) = W(@fzo Ver), for the
canonical projection 7: TV — C1(V). Equivalently, C1¥) (V) = A\(A*V) using the isomorphism A: A*(V) —
Cl(V) of Proposition This is called the Clifford filtration.
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Definition 160. The Clifford filtration on Endc(S) is the tensor product of the Clifford filtration of CL(T M)
and the trivial filtration on Endcirary(S).

Utilizing this filtration for differential operators D(S), we will define the Getzler filtration on differential
operators. By Definition [59| and , the differential operators D(S) are generated as an algebra by

1. Endcicran (95),
2. X € C®°(TM) (we write ¢(X) € End(S) for the corresponding Clifford multiplication),
3. Vx for X € C*(TM).
We define filtration by specifying the order function on these generators:
Definition 161. The Getzler filtration on D(S) is defined by
1. For ¢ € Endcyra)(S) we let ord? () = 0.
2. For X € C>°(TM) Clifford multiplication ¢(X) has ord? (¢(X)) = 1.
3. For X € C>®°(TM) let ord®(Vx) =1.
In other words, the Getzler filtration is
k
DY (S) = spanc {P =X A Zordg A < m}
i=1

where A1, ..., \, are generators as in 1., 2., 8. We write D9(S) for the algebra of differential operators with
this filtration.

Note that convention 2. is different from our old filtration convention (where the order was zero). It is
our goal to define the Getzler symbol map

0.2 DI(S) — C= (R(TM) @ A*(T*M) ® Endc(9)) . (44)
Definition 162. Define a vector bundle over M by
PB(TM) :=C[T*M] @ C[TM)].
Atz e M, ¢ € B(TM), may be written as finite sum
p= Zpl‘]dmI ®dy, pieC.
We will regard ¢ as a differential operator on smooth functions on T, M

a\ \f

o(z): C°(T,M,C) — C®(T,M,C), frs Z%x

with polynomial coefficients ¢/ = Y, ¢7 € C[T;M] in the coordinates z* := dz*: T,M — R on Ty M. In
particular, the algebra structure on P(TM) is not the tensor product of algebras. Instead, we have

(z10y) - (ZxKaL)_xl Z <> K)0p4 1.

a+p=J

Note that in [Roe] the coordinate dz’ : T,M — R is denoted x' again. This is justified by the fact

that under the canonical identification Ty(T, M) = T, M this coordinate satisfies the tautological equation
a?;i = a(z-i' This amounts to the intuition that the linear map x* = dz* : T, M — R is the infinitesimal

version of the coordinate z* : M — R. We will follow this convention.
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Remark 163. For ¢ € C*°(C[TM]) C C°°(C[T*M]® C[TM]) we have ¢(x) = > n? 8, with u’ € C, which
gives a differential operator C°(T,M,R) — C*(T,M,R) for each x € M with constant (as opposed to
polynomial) coefficients. In accordance with |[Roe|, we also write €(TM) = C[TM]. We then have

C>(&(TM) @ CITM) @ Endci(S)) = C(¢(TM) @ Endc(S))

which is the target of the principal symbol map on D(S), compare Example 12.8 in |[Roe]. Hence, for the
Getzler symbol map we replace €[TM] by the refined V[T M| and the bundle CL(TM) (viewed as a filtered
algebra in the Getzler calculus) by the associated graded algebra A*TM.

According to our Definition [I55]of symbol maps, we must define a grading on the target bundle of algebras
B(TM) @ A*T*M @ Endcy(S) of the Getzler symbol . We will use the tensor product grading, where
A*(T*M) gets the usual grading and Endc(S) has the trivial grading. Finally, on B(TM) we define:

Definition 164. Homogeneous elements p(x) = 2! @ 0; € P(T, M) are defined to have degree |J| — |I|.

P(T,M)* = Z piz'®o, | pl eC
711 =k

As a final preparation, we consider the following section, defined for each vector field X € C*°(T M)
(RX,-) € C®(T*M @ AN*T*M) C C®°(P(TM) @ A*T* M) (45)
of degree 1. At x € M it is the map T, M — A*T:M given by (RX(—,—),Y). Stated otherwise,
(RX,) € C®(A*T*M @T*M), (SAT)®Y — (R(S,T)X,Y).

Recall that the Riemannian curvature tensor R € Q2(M; End(T'M)) can locally be expressed by functions
Rijii = —g(R(ei,ej)er, ) € C°(M) for any local (not necessarily orthonormal) frame (eq,...,e,) of
TM. The R;ji; are antisymmetric for the first two and the last two entries and symmetric with respect to
interchanging 4, j with k, [, see Equation (5). Let us work out in local coordinates (z',...,2") on M
with e; = 0;,. We define (R;;);';_; to be the (n x n)-matrix of 2-forms

Ri; = ZRijkldxk Adx! = Ri; = ZRk”jdzk Adz! = —(R@i,aj) e A’T* M.
k<l k<l
(using R;jx; = Riiij.) The local expression of (RX,-) for X = a’0; used in |[Roe| and in the literature is
R(X, ) = —aiRijxj.

In particular, the degree of is one.

6.3 The Getzler Symbol

Recall that the bundle of algebras P(TM) @ A*(T*M) ® Endcy(S) is graded by the tensor product grading.
As explained before, the degree of 210y € B(T'M) is |J| — |I|, we take the usual grading on differential forms,
and let every element of Endc(S) have degree zero. Note that we also get non-zero elements in negative
gradings. The sections of this bundle is then a graded algebra, which a possible target for a symbol map in
the sense of Definition

6.3.1 Statement of the Main Theorem

We will use the obvious inclusions

TM, T*M < B(TM), P(TM), A" (T*M),Endci(S) — B(TM) @ A*(T*M) @ Endcy (5).
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Theorem 165. There exists a symbol map (the Getzler symbol)
09,: DI(S) = C (B(TM) © A*(T* M) ® Ende(S))"
uniquely characterized by the properties (see Definition for definition of the Getzler filtration on DY(S)).
1. 0§ (p) = ¢ for ¢ € Endg(S).
2. 0¥(c(X)) = X> € A (T*M) for X € C=(TM).
3. 0Y(Vx) = 0x — 2(RX,") € C®(P(TM) ® A2(T*M)) for X € C=(TM). (Note that Ox := X can be
canonically viewed as a section in C®°(P(TM).)

Proof. Uniqueness is clear, since we have defined the symbol on all generators of the algebra D(S) of differ-
ential operators. The problem with existence is that a differential operator may be decomposed in several
ways into the generators; it is not clear that our definition will be coherent. We will prove this by considering
the action of differential operators T' € D(S) on smoothing operators @) by post-composition T o @ (whose
kernel T (kq(-,¢)) is obtained by applying T only in p-direction). This will require some preparation, in
particular we must define the symbol of a smoothing operator. This is done in the next section, after which
we return to the proof of Theorem [165] O

6.3.2 The Canonical Symbol on Smoothing Operators

We now define the symbol of a smoothing operator. For clarity, we shall call it the canonical symbol, although
it may also be viewed as a generalization of the Getzler symbol to pseudo-differential operators. We begin
by defining the canonical filtration on smoothing operators C*°(S K S*).

Fix geodesic normal coordinates (z!,...,2™) near a point ¢ € M. The Taylor expansion of the smoothing
kernel s = kg(—, q) near ¢ has the form (see Definition [150))

s~ E Sax”

and may be regarded as a section of C[T, M] ® End(S,) = C[T; M] @ Cl(T,M) ® Endc;(S,). For varying q
we hence obtain the Taylor expansion map

7:{Q : C=(S) = C*(S) | Q smoothing operator} — C*(C[T*M] ® End(S)).

The power series algebra C[T*M] has a filtration by assigning to ®(= (dz)®) the filtration degree —|a|, as
usual. Recall the Clifford filtration on End(SS) from Definition Passing to the associated graded algebra
defines the Clifford symbol

o End(S)<i = C1")(T,M) ® Endc(S) — A*(T,M) @ Endcy(S).
We take the tensor product filtration on C[T*M] @ End(S).
Definition 166. The canonical filtration on C*°(S X S*) is the pullback filtration along the map .

Hence the filtration degree of a smoothing operator is defined by passing to its Taylor expansion: if at
every point ¢ € M we have s(—,q) ~ 3 sqz® (for normal coordinates (') at ¢q) with s € End(Sg)<p|a|
in Clifford filtration, then by definition s has canonical filtration < k. Notice that in this filtration x® has
order —|a| so that we get elements of filtration order m for all m € Z.

Definition 167. Suppose s € C*°(S K 5*) lies in canonical filtration < k. For fized ¢ € M let s(—,q) ~
> sqx® in normal coordinates at q. The Clifford symbol o(s)|, of s at g € M is

> ot e (5a)2* € C[T; M ® A*(T,M) @ Endci(S,).

Letting q vary, identifying TM = T*M by the metric, and projecting to the homogenous part of degree k on
the right hand side, we get the canonical symbol

op: C®(SKS*)<), — C®(C[T*M] @ A*(T*M) @ Endcy(5))F.
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Note that the target of this map has the tensor product grading of the graded algebras C[T* M|, A*(T*M),
and Endcg(S), the last being trivially graded (with degree 0). Also note that A*(7T* M) ® Endc;(S) sits only
in finitely many degrees so that we can replace the power series algebra C[T*M] by the polynomial algebra
C[T*M]. This is in contrast to [Roe]|, paragraph in front of Definition 12.20, who keeps C[T™*M] in the target
of the canonical symbol. It seems that with Roe’s definition the symbol o does not vanish on smoothing
operators of canonical filtration degree < k — 1, which leads to difficulties in the proof of Lemma which
corresponds to [Roe|, Prop. 12.22.

Our map oy, (by definition) maps C*°(SXS*)<,_1 to zero. Note, however, that although we can compose
smoothing operators and hence put an algebra structure on the set of smoothing operators C*°(S) — C*(5),
this map is not compatible with o. Therefore o is not a symbol map in the sense of Definition [I55] Rather
we will use the compatibility of the canonical symbol o with the Getzler symbol o“ on differential operators
under the natural action of differential operators on smoothing operators given by composition, see Lemma

[I68] below.

6.3.3 Proof of Theorem [165]

The bundle C*(C[T*M] @ A*(T*M) ® Endci(5)) is a module over C*(P(TM) @ A*(T*M) @ End(5))
by means of the bundle map

B(TM) @ C[T*M] — C[T*M]
defined at x € M by letting a differential operator ufxfd; : C°°(T,M,C) — C°°(T, M, C) with polynomial
coefficients pfz! € C[T;M] act on a polynomial 3" c,z® € C[T}M] as a derivation in the usual way. Note
that this is defined by the usual linear action of d; on 27 = da’ (i.e. 9;(27) = 55) and the Leibniz rule on

products z®. Hence we indeed get a bundle map. On A*(T*M) and End¢(S) the module map is induced
by the usual multiplication. This module structure is used in the following lemma to compose the symbols.

Lemma 168. Let T € DY(S) be a generator of the algebra of differential operators, so ord? (T)=m € {0,1}.
Let Q be a smoothing operator in filtration < k. Then T o Q is a smoothing operator in filtration < k 4+ m
and the canonical symbols are related by

Tetm(T 0 Q) = 07 (T) - o4 (Q)-
(here 09 (T) is the Getzler symbol of the generator T as defined in Theorem |165})

Proof of Theorem [165] Decompose an arbitrary T € DY(S),, into generators S - -- S, of Getzler order < 1
and so that their orders add up to m (by definition of the Getzler filtration) and then an inductive application
of our lemma shows that T o @ has Getzler order < k + m and

07 (TQ) =09 (51) -+ 9(Sy) - 0 (Q) € C™(C[T* M]otimesA*(T* M) ® Endci(S)).

But of (Q) and of +m (T'Q) are defined without any reference to the decomposition of 7', so the algebra element
09(81)--09(S,) € C®(P(TM) @ A*(T*M) ® Endcy(S)) is uniquely determined by this equation, because
C®(P(TM)QA*(T*M)®FEndc(S)) acts faithfully on the module C°°(C[T* M|QA*(T*M)REndg (S)). O

Definition 169. A section of a bundle E — M with connection over a Riemannian manifold M is said to
be synchronous at g € M if for all points p in a neighborhood of q the section is parallel along the geodesic
from q to p.

Proof of Lemma [I68] Fix ¢ € M and let (z°) denote normal coordinates at q. Let kg € C*°(S X S*); be
the smoothing kernel of @) and consider the Taylor expansion

s:=kq(—,q) ~ Y sax® € (C[TyM] @ CUT,M) @ Endci(Sy)) <

where s, € End(S;)<j+|a|- We consider the generators T' case by case.
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1. Suppose ¢ € C°°(End(5)). Consider the Taylor expansion around ¢

o~ s, g€ Enda(S,).

Then ¢(q) = ¢o and

pos= Z‘PO Sq)r + Z @ﬂ(Sa)xa+ﬁ
——— —
filt <k GlBI>0 1 <pvlal—lal— |81 <k—1

lies in canonical filtration < k and has canonical symbol " O'ISJIF‘M(()DO(SQ))xO‘ = a9(p)a(s)ly-

2. Let X € C*(TM) and Taylor expand X ~ " Xsz? around g, where Xy = X,. Then

e(X)s c(X0)sax™ + c(Xg)sax 8
Rt
filt <1+k * filt <14+k—|B8|<k
has canonical filtration < k + 1 with o(c(X)s) =", Xg A ag_la‘(sa)xo‘ = 0¥ (c(X))o(s)]g-

3. Let 9; = X € C°°(TM) and consider T' = V x. We begin by considering the case where s in synchronous
at ¢, so that s, = 0 except for sg = s(q). Write

Vxsr~ Ztaxa.

Let Y = " 279; be the unnormalized radial vector field. We have [X,Y] = X = 9;, Vys = 0, and
Y@z = |a|z®. Consider the Taylor expansion of K*(X,Y) - s for the curvature tensor K of S:

- Z(‘O[| +1)taz® ~ VxVys — VyVxs — Vixyjs = K(X,Y) s ~ Z(Kfj)asoxjxa. (46)
g,
There is a decompositiorﬂ K;j = RiSj + F; -S into the Riemannian endomorphism RS € End(S;)<2 with

(RS ) = —iR;; and twist curvature F g € EndCI(S ) = End(S,)<o, which is treated on exercise
sheet 13 Putting this into the right hand side of (46)) and comparing coefficients gives

L ST [(RE)a+ (FE)a] s

|a|+1] a; >0

Hence to = 0 and t,, is in filtration < k + 2. This implies that Vxs ~ > t,x® is in filtration < k + 1,
our first claim. To compute the symbol, we may work in Fj1/F). Neglecting terms of filtration < k,
we see that t,2%, having filtration < k + 2 — |«/, vanishes unless |«| = 1. Hence

orr1(Vxs) = ng+2 @l = ZUQCI(RZ Y(s0)27 = Z ~Rijo (s0)m (47)
J
This clearly equals

1 .
o7 (Vx)ow(s) = (81' + 4Rijx]> o (s0).

This completes the proof in case s in synchronous. We now consider the general case. By the Leibniz
rule for the covariant derivative we havdﬂ (see the following lemma for justification)

Vxsn~ Z (Vx(sa)xo‘ + aisaxo‘_e"’)

5 We define the twist curvature FS by KS = RS 4 FS for the Riemannian endomorphism given by RS(X,Y) =
5 Zk<l c(er)e(e))g(R(X,Y)er, e;) € End(S). The twist curvature is a Cl-linear section of Q?(End(S)) (exercise sheet 13).
6We set @ = 0 if some a; < 0.
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By the case we have already considered, Vx(s,) has canonical filtration < k + || + 1. Hence both
summands in the expansion have canonical filtration < k£ 4 1. For the symbol we get

or1(Vxs) = Z [0kt al+1(Vx (5a))Z% + QiTki)al(Sa)z* ]

[e3

which agrees with (using the case already proven for s, )

1 .
o1(Vx)ow(s) =Y (ai + 4Rijwﬂ> Tt ol (50)2°. O

[e3%

Lemma 170. Let s € (S ® S}) have Taylor expansion s ~ 3 s,x* at q. Then

Vxs Z [Vx(8a)x" + 50X (%))

where 8, is the synchronous extension of s, € End(S,) (Vx(5a)|q is zero, but higher terms appear in the
Taylor expansion. In the formula Vx(5,) denotes this Taylor expansion).

Proof. Let 7(x) denote parallel transport from ¢ to 2. Assuming the Taylor expansion s(z) = > 7(z)sqz®
converges, the Leibniz rule shows

Vxs= Z Vx(78a)x® + sa X (2%).
Finally, note that 5, (x) = 7(x)s4. O

6.3.4 Reduction to the Mehler Formula

Recall the Getzler filtration on DY(S) and the canonical filtration on smoothing operators C°>°(S X S*). For
these we defined symbol maps ¢9 and ¢ which are compatible with the module structure of C>(S X S*)
over DY(S). The module structure on the ranges of the symbol maps was defined in at the beginning of
Section This situation may be depicted as follows.

composition

T

DY(S)<m C>*(SK® S*)<k
lTaylor
a9 module action c> ((C[[T*Mﬂ ® CI(TM) ® EndCl(S))Sk
Co°(P(TM) @ A*(T*M) @ Endei(S))™ Co°(C[T*M] ® A*(T*M) @ Endg(S))*

Recall also that we studied the heat kernel k;, which is characterized by

0
by means of an asymptotic expansion ki(—, q) = hi(—, q) (Z;io t-juj) where u; = ©;(—,¢). The main result
of Section was that the u; € C°°(S ® S;) may be determined recursively as solutions of the differential

equation 4 4
Vaor(rigtuy) = —ri =1 " D?u;_y, u_1 =0, up(q) = idg, - (48)

70



(see the proof of Lemma [130]) Of course for the Index Theorem, Equation (36]), one does not need to know
every uj, it suffices to understand the Getzler symbol of w,/o. By the remarkable design of the Getzler
symbols, the symbols 09 (u;) are recursively determined by simpler equations, which we will derive from
, that may be solved explicitly (Mehler formula).

Proposition 171. The square of the Dirac operator D? € ’DQ(S)SQ has Getzler filtration < 2 and symbol

atqe M
2

ZR” | +F5(q)

o9 (D) == W

Here, F'°(q) denotes the twist curvature at q (see page .

Here R;; is computed with help of an orthonormal frame (e; = 8(21‘) of T,M and (x') = (dz") is the dual

frame on T,/ M.
Proof. Putting the definition of twist curvature into the Weitzenbock formula (Theorem , one gets
1
D? = V*V + —scal, + F.
4
Here, F =Y, _, c(ex)c(er) F¥(ex, €;) has Getzler filtration < 2. Combined with

VIV ==Y g (V;Ve =T V)

.4,k

it follows that D? has Getzler filtration < 2. For symbols we have

0§ (V*V), = oa(— Zvv Z(aaer ~Ri;(q)x )
o (scaly) =0

of (F)lg =) exert(ex, e1)lq = F5(q). O
k<l

For a function f and section s we have the composition formula

ar(fs) = Y oif)o;(s). (49)

i+j=k

In particular, if s has filtration < k, then

or(fs) = for(s)
since f has filtration < 0 and s has no components > k.

Proposition 172. The (u;) are in filtration < 2j. Let v; = 095(u;) € C[T,M] @ A*(T; M) @ Endci(S,).
Then
Jvj + 0§ (Vra, Juj = —03 (D*)v;1, (50)

where we set 0§ (V,o,) = o' (5% + 2R,

We find the corresponding formula on the first part of p. 162 in [Roe] misleading. Roughly speaking
the operator % appearing on the left of that equation must be replaced by the the Getzler symbol of this
operator, which involves a curvature term. Fortunately, this is consistent with the proof of Corollary
below so that the the “symbol heat equation” for W derived in [Roe| holds.

71



Proof. We rewrite (48)) as
- 1/4, 1/4, . 1/4n2,, . _
39w+ Ve, (97 uy) + g7 " Duj =0

for all » # 0 and the radial vector field 0, = %mj 0;, using normal coordinates at ¢q. Hence Y = r0, is
a smooth vector field which vanishes at ¢. Since by induction D?u;_; has canonical filtration < 25 (by
Proposition and Theorem [165)) it follows from Equation that u; has canonical filtration < 25 at q.
Applying the canonical symbol map at g gives

jooj(uz) + 025 (Vo 9" uj) + 09 (DPuj—1) = 0.
Note that Lemma@ does not apply to the middle term since u; does not have filtration < 25 —1. It equals
02(Vro, (9" u5)) = 09;(Vro,(9"*) - uy) + 025(g"* - V0o, (u5)) = 025(Vro,u5),
applying Equation because of the facts that V5. u; = 2'V,u; has filtration < 25 and

9 14 0 1 ) k1 .
ng = rg(l 21 ;Rlcwx r+-- ) has filtration < —1.

We now calculate this middle term o9;(Vrg,u;) by hand. Let u; ~ >~ uqz® for uy € End(S;). Then from
Yz* = |a|z® and Lemma [I70] we get

02j(Vya,uj) = ZO’QJ;HQ‘(VT@NQQ)QJQ + 02j4]a| (Ua)|az®.
Symbols of sections of the kind V,s,_(@,) have be calculated in the proof of Lemma m 3. in :
_ 1 i
02j+]al(Vra, la) = ZRijagl(ua)x z’
Hence the middle term equals

1 o o, i 1 -
O'Qj(vy-aru]‘) = ZRijl‘lJZ]O'Qj(Uj) + 332@0'2]‘(’11]‘) = 3}2 (al'l + 4Rij1‘]) Uj O

The power series solutions v; = 3 axa® with ax € A(Ty M) @ Endci(Sg) of the polynomial-coefficient
differential equation of are unique, given the initial condition vy = idg,. For the proof, suppose by
induction that v;_; = 0. Then is simply the difference equation

. 1
(U +IKak + 1 ZRijaKfeifej =0,
4,J
where we set ax = 0 if some component of K = (ki,...,ky) is negative. Another induction shows that
aKg = 0. Hence Vj = 0.

Corollary 173. Fort >0 let Wy = hy(vo + tvy + - - + t"/?v,,5) € C[T; M] @ A*(T; M) ® Endci(Sy), where
we se hi(x) = (4nt) "/ exp(—||z||?/4t) and v; = oo9;(u;)|,. Then

ow
T o2(D?)| W, = 0. (51)
Let wj € C[Ty M] @ A*(T; M) @ Endci(S,) have degree 2j and suppose hy(wo + twy + - - - + t"/an/g) solves
(1) with wo = ids,. Then w; = o25(uj)|q. Hence the solutions of (1)) of this form with given initial
condition wo = idg, are unique.

7In the coordinates of Ty M induced by normal coordinates at g
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Proof. It remains only to see that solutions of (51)) of the type hi(vo + tvq + -+ + t"/ 2, /2) correspond
exactly to solutions of the system of equations (50)). An explicit computation shows the following analogue
of Lemma [130)

o (D) (e~ 5) = hy - 0§ (D?)(5) + (Ahe) -5+ 20§ (V2 )(s).

n r2 oh -n r2
Ahe = <2t4t>h o (2t+4t2)ht

Putting the last two equations into the left-hand side of and dividing by h; gives

Recall also

n r? i . ] n r? j j
( ) vt + (j + Dvjat! + ( YTl 'tj) + 07 (Vra,)vj1t?

2t 42 ot 42"
= (7 + Doj1 + 02(D?)(v3) + 05 (Vra, ) (vj11)) ¥/
This power series is zero precisely when holds. O

6.4 The Mehler Formula

Proposition 174 (Mehler Formula). Let R € C™*" be a complex skew-symmetric matriz RT = —R, let
F € C. Suppose n =2m is even. The differential equation

ow 0 1 j 2
5 > o+ R’ ) wet Fug =0 (52)
i=1
has the (obviously analytic in R) solution
R(p) — (4mt) 2ot /2 (B2 LR R _
wy'(x) = (4nt) det (sinhtR/2 exp | — {5 coth 5 %% exp(—tF). (53)

Remark 175. If R is not invertible, the expression det'/? is set to zero. Else the generalized eigem)alue of
R occur in pairs £A1, ..., £ A, and give rise to double eigenvalues of the symmetric matrix %, whose

2
determinant is therefore T\", (%) . We define

det (sinh tR/2 H sinht); /2’

i=1

Alternatively, one may use the Jordan canonical form of R to define f(R) for any power series f(z).
The expression coth% is defined in this way using the power series coth(tz/2). Then one can also de-

fine det'/? (Sintft/;m) = det(f(R)) for f(z) = ,/sirfig/z, the unique square-root of the power series with
constant term 1.

Proof. In principle, we need only put into . To make the calculation more manageable, we do a
series of reductions. Since R is skew-symmetric we find a unitary matrix U so that

0 -\

8The zeros of det(R — X - E,,)
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In case R = (0 9) and F = 0, formula simplifies to

6 0

w? () := (4nt) ™1 <sm§?tﬁ)) exp (— 319|x\2 coth(t9)), o =if/2.

The function w/® may be expanded in terms of these as a product
R M An
wi'(Uz) = wy (21, 22) -+ - wy ™ (Xp—1, Ty ) exp(—tF).

Since U is linear, an easy application of the Leibniz and chain rule shows that w/® solves (52)) in case each
w? solves the corresponding 2-dimensional equation, which we rewrite as

ow' (0 O\ e (0, 02\
o \ox 4) T\ "4 )

0? o? PR BN T | 0 0 0
_(W+8y2)wt+169 (x —|—y)wt—|—29(xay—yax)wt.

=0

The last summand vanishes since w? is obviously rotationally symmetric, so it remains to check
ow’ 0? 0? o 1 0
W = <8$2 + 873;2 Wy + E92(1’2 + y2)wt. (54)

Clearly, w?(x,y) = wf(x) - wf(y) is a product of functions of one variable, given by

wd (z) = (4mt)~1/? W v exp (— 119;1:2 coth(t9)), o =if/2.
K sinh(t1)) 4 ’

To prove , it suffices to check the following for this one-dimensional function:

out _ oot
ot 9x2

1
— 1192;32111?.

We calculate:

ow ( 11— tJcoth(td)

Lo o 2 0
- _— '} 1 — coth(t¥
. 2% + o1 z*(1 — coth(t9) )) wy

1
= <—219 coth(td) — %92952(1 - COth(tﬁ)2)> wy

ow 1 0

B —5191: coth(td) - wy

0w 1 9, Lo o 2 9
T2 = —iﬁcoth(tﬁ)wt + 119 x” coth” (t¥)wy O

Inserting tangent vectors X,Y € T, M into , Proposition shows the resulting differential equation
to be of the form (52). The solution is a polynomial in ¢ since for the curvature 2-form R’ = 0 for
j > n/2. Hence the uniqueness statement in Proposition [51| applies:

Corollary 176. For each q € M let W; be defined as in Corollary [I73] Then

_ (dmt)—/2dett? (B2 LR _tFS
Wy = (4nt) det (sinhtR/2 exp | — {5 coth 5 2 exp(—tF”(q)),

for the curvature matriz R at q and the twist curvature F*¥(q)
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6.5 Genera
6.5.1 Complex Vector Bundles

Let f =1+ p-, ax X" € C[X] be a normalized formal power series with complex coefficients a;.
For a complex vector bundle ¥ — M with inner product and compatible connection, we denote the
curvature 2-form by RV € Q?(M;End E).

Definition 177. The Chern f-genus is defined as
K;(E,V) =det f (;ﬂRV) € Q(M;C).

Here, the (nilpotent) curvature form is formally inserted into the formal power series f. Thu:ﬂ
f <iRV> =1+ i ar (’)k RY A---ARY € Q(M;End(E)),
21 Pt 2 W
which is then post-composed with the determinant End(E) — C.

The proof of the following proposition can be found in the appendix of the book Characteristic Classes
by Milnor-Stasheff [MS]. It is based on the Bianchi identity.

Proposition 178. The differential form Ky(E,V) is closed. Its de Rham cohomology class is independent
of the chosen metric and connection on E.

Definition 179. The Chern polynomials ¢i: C"*™ — C are defined as the k-homogeneous components in

> er(R)tF = det (1 +tR).
k=0

n

Hence co(R) = 1,¢1(R) = tr R, and ¢, (R) = det R. The k-th Chern form of the complex vector bundle E is
1
cx(E, V) = ¢, <%RV> .

The de Rham cohomology classes are called Chern classes. It can be shown [MY] that they represent classes
in the integral cohomology [cx(F, V)] € H?**(M;Z), the k-th Chern class of E.

More generally, ¢;(R) is the k-th elementary symmetric polynomial o (\1,..., ;) in the eigenvalues of
R. Returning to Chern classes for a complex vector bundle F, pure algebra allows us to adjoin n elements
T1,...,T, to the de Rham cohomology algebra so that we may write

Ck(E,V) == U;c(l‘l, N ,xn).

It is not hard to see then that we may rewrite the Chern f-genus as

n

[Kf(Evv)] = Hf(l‘]) =: Kf(Cl,Cz,...)

j=1

Since the product is symmetric in the x;, it may be expanded in terms of the elementary symmetric poly-
nomials ¢ (E, V) which defines Ky on the right.

9Note that only finitely many summands are non-zero

75



Definition 180. The Chern character of E is
ch(E) = tr (exp (;Rv>) € Q°(M;C).
T

This defines a closed differential form and hence a de Rham cohomology class. Using the formal variables
above the Chern character may be rewritten as

- 1
[ch(E)] = Zemz‘ =dimFE +c; + i(cf —2¢3) + - -

i=1
Suppose that S — M is a complex Dirac bundle. Recall from the decomposition
Endc(Sq) = Cl(n) ® EndCI(Sq), EndCI(Sq) = Endc(V)

where S; = A ® V in the isotypical decomposition. Decomposing an endomorphism F = ¢ ® f in this
way defined, as we recall, the relative trace tr5/*F = tr(f) (this is related to the super trace of F by
Equation . The curvature RY of S is a 2-form with values in Endc(S). The twist curvature F' is a
2-form with values in Endci(S,). In this special situation we define:

Definition 181. ch(S/A) = tr¥/% exp (5= F9)

For example, if S = A®®V has the tensor product connection (A° = Pspin (M) Xgpin A is the spinor bun-
dle with its connection inherited from M and V is another vector bundle with inner product and compatible
connection) then ch(S/A) = ch(V).

6.5.2 Real Vector Bundles

Let E — M be a real vector bundle with inner product and compatible connection V. Let g(z) = 1 +
Y peq ;2" be a normalized formal power series. Define

fz) =Vg(z2) =1+ 2522'2%

where the root has been chosen so that f is normalized.

Definition 182. The Pontrjagin g-genus zﬂ

K,(E,V) = det <f (;TRVD .

Similarly as for complex bundles we may introduce new formal variable yi,...,y, (the rank of E is n)
for which

[Kg(E7 V)= Hg(yi> = Kg(p17p27~-~)7 Pi =0i(Y1,-- - Yn)-

Again it follows from the theory of characteristic classes [MS| that p, € H**(E;Z) can be identified with
the k-th Pontrjagin class of E.

Example 183. 1. The A-series is gA(z) = Sinf£/2 =1- iz—i—%ﬁ --+. The corresponding Pontrjagin

genus is called the A-genus (or A-class). We have

1
K a(pip2, ) =9(n) - 9(yn) =1— —(ya + -+ yn)

(R U)oy (et s )
24 5760 7! n) T 942 3

1 1
=1—- — — (7Tp? -4

24P T g0 (P~ Ap2) +

10This is just the Chern f-genus of E ® C
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2. The L-series is g*(z) = tan\/hgﬁ =1+ %z— %zZ—i—- -+. The Pontrjagin genus for L is called the L-genus
or L-class. Then

1 1
Ky (p1,p2,...) =1+ gpl + 5(7]92 —ph) -

6.6 Proof of the Index Theorem

After [77) pages of tedious preparation, we happily arrive at a complete proof of the main theorem:
Theorem 184 (Atiyah-Singer Index Theorem). Let S — M be a Dirac bundle over a closed oriented
Riemannian manifold M"=2™ with the canonical grading. Then we may calculate the index as

ind(D) = /M A(TM) A ch(S/A).

Proof. In Theorem we found the following expression for the index:

1

ind(D) = )y /M trs ©,,2(¢, ¢)dvol(q).

Recall that we write ©;(p, ¢) = ug-q) (p). By the super trace of }_ cre;@¢! = uilq/)Q(q) € Cl(n)®Endci(S,)

is (=2i)"cqa,.. nytr S/A L dyol(q) = (—2i)™tr S/Aan(un/g) (the Getzler symbol vy, /9 = 0 (uy,/2) exactly
picks out this component). Hence

trS/A v(q)

(2mi)™ /M n/2
I,

tr /4 (v(()q)(q) +-+ viq/)Q(q))

ind(D) = (q)

M

o1 /Mdetw <£/}§/z> tr 5/ (exp(— FS))

= (2732,)7% /M det /2 (&) tr 9/ (exp(—F?))

LR/2 j
det 1/2 % tr /2 (exp(— FS))
sinh 5-R/2 2

N (2 'm/ trS/AWtqzl(Q)

—

M

A(TM) A ch(S/A) O

I
=

6.7 First Applications of the Index Theorem

Example 185. Let M™=2™ be a spin manifold and consider the Dirac bundle SA = Papin Xgpin A for the
unique irreducible representation A of Spin (see Section , along with the canonical grading induced by
A = At @ A~. As calculated on exercise sheet 13, the twisting curvature FS = 0 vanishes in this case.
Therefore, using Example [I83] we get

- _ [ i _ o L =N
md(D)—/MA(TM)—/M (1 24+5760( 4ps + Tpy) + )

In particular, for the spinor Dirac operator we have ind(D) = 0 unless n is a multiple of four.

Theorem 186 (Lichnerowicz). Let M be closed spin manifold with A(M) # 0. Then there exists no metric
g on M with positive scalar curvature scalg > 0.
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Proof. Recall the Weitzenbdck formula D? = A + iscalg in Theorem for the spinor Dirac operator.
Suppose scal, > 0. To prove the theorem we must show ind(D) = 0, by Example For this we prove
that ker(D;) = 0; a similar argument shows ker(D_) = 0. Let Ds =0 for s € C*°(Sy). Then

1
0= (D?s,s) = (As,s) + Zscalg<s,s>
1
= (Vs,Vs) + Zscalg<s, s)
is a sum of non-negative numbers. It follows that these must both be zero, so ||s||> = 0 and s = 0. This

proves ker(D,) = 0. O

Example 187. For a K3-surface, A(M) # 0 (this is a certain 4-manifold for which specific constructions
exist, but which usually defined in terms of its properties). The signature of a K3-surface may be computed
from its Hodge diamond, using a famous theorem by Hodge. Hence L(M) = —16 and A(M) = —%-L(M) =2.

Here, the relationship between L(M) and A(M) for 4-dimensional manifolds follows from Example . Note
that the K3-surface is spin.

The spin condition is essential in Theorem [186| For example, A(CP2) = —1/8, but CP? has a metric of
positive scalar curvature (the Fubini-Study metric). In particular, CP? is not spin.

Theorem 188 (Hirzebruch Signature Theorem). Let M"=2" be an oriented closed manifold. Then
signature(M) :/ L(M).
M

(recall here the Pontrjagin L-genus from Ezample m)

Proof. We have already seen in Examples and that the complexified bundle of exterior forms S =
A*(T*M) ® C with the grading given essentially by the Hodge operator leads to the signature operator D =
d~+d*. The twist curvature can be computed to be given by the Pontrjagin f-class for f(z) = 2™ cosh(y/z/2).

Hence the signature itself is the Pontrjagin genus for QmSm\f% -cosh(y/z/2), which is the same as the genus
NG
for —- 7 O

Example 189. Since L(TM) =1+ B + ;=(Tps — p3) + - -+, for 4-manifolds M* we get

M
signature(M?) = (T)

Similarly, for M spin ind(D) = A(M) = — 5.

The signature and index are integers. This leads to divisibility theorems for characteristic numbers. For
example, the signature theorem implies that p; (M) is always a multiple of 3!

Theorem 190 (Rokhlin). If M* is a 4-dimensional closed spin manifold, then A(M) is even. In particular,
the signature of a closed spin 4-manifold is divisible by 16.

Proof. The Clifford algebra Cl(4) may be identified with H?*? and the unique irreducible representation A
of Cl(4) is then H2. The action is by usual matrix-vector multiplication. In particular, A is a quaternionic
vector space. This quaternionic structure (from the right) is compatible with Clifford multiplication (from
the left), so the associated spinor Dirac bundle is a quaternionic vector bundle. Moreover, the Dirac operator
is equivariant under H. In particular, the spaces ker(Dy4 ) are quaternionic, so their complex dimension is a
multiple of two. O

A famous application of the Atiyah-Singer index theorem in complex geometry is the theorem of Hirzebruch-
Riemann-Roch. Some information can be found on p. 175 ff. in [Roe].
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