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The subject of these lecture notes is global analysis, in particular the global analysis of the Dirac operator.
We shall be concerned with the study of geometrically motivated linear PDEs on manifolds, which will then
give us information on the geometry of the underlying manifold. The most important aspects of this subject
include the following:

• In keeping with our global point of view, we shall consider PDEs on sections of smooth vector bundles
on differentiable manifolds.

• The study of the (generalized) Dirac operator. For their construction we shall will need the concepts
of Clifford algebras and Spin structures.

• The solution theory for linear PDEs is based on the theory of Hilbert spaces, in particular Sobolev
spaces.

• Our main interest will be in elliptic PDEs, the Dirac operator being the most important example.
For these operators we shall develop the theory of elliptic regularity. An important application is the
Hodge Theorem on closed Riemannian manifolds, asserting that one can always find a unique harmonic
representative in every de Rham cohomology class.

• We will study the spectrum of elliptic operators, which (over compact manifolds) consists only of
eigenvalues. It is interesting to ask what geometric information is encoded in the spectrum, which is
the topic of spectral geometry.

• The main goal of these lecture notes is to explain the Atiyah-Singer Index Theorem. It strikes a bridge
between analytic properties of elliptic operators and global topological properties of the manifold in
question, expressed through the characteristic classes of the tangent bundle.

• The proof of the Index Theorem presented in these lecture notes is based on the heat equation and the
study of the asymptotics of the heat kernel.

• As applications we will discuss the Signature Theorem of Hirzebruch in differential topology, obstruc-
tions for the existence of positive scalar curvature metrics on spin manifolds and integrality theorems
for characteristic numbers.
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These lecture notes are based on the book Elliptic operators, topology, and asymptotic methods by John
Roe (Pitman Research Notes in Mathematics 395, 1998). In the following, we will make references to this
book by ‘[Roe]’.

1 Vector bundles, Differential Forms, Connections, and Curvature
Good references for the material in this section include

Lawrence Conlon, Differentiable manifolds, Second Edition, Modern Birkhäuser Classics

(which can be downloaded via our library) as well as sections 8 and 9 of

John Milnor, Morse theory, Princeton University Press.

1.1 Sections of Vector Bundles
Let M be an n-dimensional smooth manifold and let V → M be a smooth real vector bundle. The real
vector space of smooth functions on M will be denoted by C∞(M). The C∞(M)-module of smooth sections
C∞(V ) is the space of all smooth maps

Y : M → V

with Y (x) ∈ Vx (the fiber over x ∈ M) for all x ∈ M . Some authors also use the notation Γ(V ) to denote
this space. If we let R → M denote the trivial vector bundle, we hence have C∞(M) = C∞(R). In other
words, sections of vector bundles may be considered to be generalizations of functions.

1.2 Tangent Bundle
A particularly important vector bundle is the tangent bundle TM → M of a manifold. Sections of this
bundle are called smooth vector fields on M . In local coordinates (x1, . . . , xn) on an open subset U ⊂M , a
vector field X ∈ C∞(TM) takes the form

X|U =

n∑
i=1

Xi∂i

with smooth coefficient functions Xi. Here, ∂i denotes the directional derivative in the i-th coordinate
direction. For a smooth function f on U and x ∈ U , we have ∂i(x)(f) = ∂f

∂xi (x). If X ∈ C∞(TM) is a vector
field and f ∈ C∞(M) we define a function

∇Xf = Xf : M → R

as follows. On a coordinate neighborhood U we let

(Xf)(x) =

n∑
i=1

Xi∂i(x)(f) (x ∈ U).

It is easy to check that this definition is independent of the choice of local coordinates. Indeed, if (y1, . . . , yn)

is another set of coordinates and if we let ∂yj

∂xi denote the Jacobian of the coordinate transform from x to y,
then we have

∂f

∂xi
=

n∑
j=1

∂yj

∂xi
∂f

∂yj
.

The expression Xf is also called the Lie derivative of f in direction of X. It is a derivation meaning that
we have

X(fg) = Xf · g + f ·Xg (f, g ∈ C∞(M)).

As shown in a course on differential geometry, the space of derivations of the algebra C∞(M) may be
identified with the space of vector fields on M .
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1.3 Constructing New Vector Bundles from Old
We recall that any functorial (and smooth) construction of vector spaces (such as the dual space, direct
sums, tensor products, homomorphism spaces, exterior and symmetric powers) may be applied fiber wise to
vector bundles. Hence we have the direct sum V1 ⊕ V2 → M of vector bundles V1, V2 → M and the dual
vector bundle V ∗ → M with fiber V ∗x over x ∈ M . For another example, the fiber of Hom(V1, V2) over
x ∈M is Hom ((V1)x, (V2)x).

1.4 Differential Forms
An important example of this construction is the cotangent bundle T ∗M of a manifold. Sections of T ∗M
are called differential forms. We write Ω1(M) = C∞(T ∗M). The basis dual to ∂1, . . . , ∂n will be denoted
dx1, . . . , dxn. More generally, we will use the notation Ωm(M) = C∞(ΛmT ∗M). By choosing local coordi-
nates on U ⊂M a differential 1-form ω ∈ Ω1(M) may be expressed as

ω|U =
∑

1≤i≤n

ωidx
i

with smooth coefficient functions ωi ∈ C∞(U).
There is a unique sequence of linear maps

dm : Ωm(M)→ Ωm+1(M)

satisfying

• df =
∑n
i=1(∂if)dxi

• d2 = 0

• d(ω ∧ η) = dω ∧ η + (−1)deg(ω)ω ∧ dη

Because d2 = 0 we may define

Hm
dR(M) =

ker(dm)

im(dm−1)
.

This is the m-th de Rham cohomology of M . Together with the wedge product it is a graded commutative
ring with unit, i.e. [ω] ∧ [η] = (−1)deg(ω)·deg(η)[η] ∧ [ω].

IfM is a closed Riemannian manifold, we will prove later (see Hodge theory) that every cohomology class
contains a unique harmonic representative. This means that ∆ω = 0 for the Hodge-Laplacian on m-forms
(see also exercise 4 on worksheet 1). The Theorem of de Rham identifies the so defined de Rham cohomology
with the singular cohomology of M .

1.5 Homomorphism bundles and Tensors
Suppose V,W are vector bundles on M and let φ ∈ C∞(Hom(V,W )) be a section of V ∗⊗W . Then we may
define a linear map φ̂ : C∞(V )→ C∞(W ) by

φ̂(X)(x) = φ(x)(X(x)).

This assertion has a converse, which will be discussed on the exercise sheets:

Proposition 1. Every C∞(M)-linear map f : C∞(V ) → C∞(W ) can be written as f = φ̂ for a unique
φ ∈ C∞(Hom(V,W )).

In other words: f : C∞(V ) → C∞(W ) being C∞(M)-linear is equivalent to f(X)(x) being dependent
only on X(x) (so that f is ‘tensorial’).
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Proof. The proof has two steps. First, we prove that f(s)(p) depends only on s|U if p ∈ U . For this it suffices
to show that s|U = 0 implies f(s)(p) = 0. Let χ be a smooth function with χ(p) = 0 and χ|M\U = 1. Then
χs = s, so

f(s)(p) = f(χs)(p) = χ(p)f(s)(p) = 0.

In the second step, we show that f(s)(p) depends only on the value s(p). This may then be taken as
definition for φ(p)(s(p)) and it has the required property. For this, suppose s(p) = 0. We wish to prove
f(s)(p) = 0. Let (U, φ = (x1, . . . , xn)), be a chart neighborhood centered at p (i.e. φ(p) = 0) in which
V = U × Rk. Then s may be written in this local frame as

s|U =

k∑
i=1

f iei, f i ∈ C∞(U).

By assumption, f i(p) = 0. Using the first step, we get

f(s)(p) = f(s|U )(p) =
∑
i

f i(p)f(ei) = 0.

Introducing the notation Ωm(V ) = C∞(ΛmT ∗M ⊗V ), we may therefore identify elements of Ω1(V ) with
C∞(M)-linear maps C∞(TM)→ C∞(V ).

1.6 Covariant Derivatives
For X ∈ C∞(M) we want to generalize the directional derivative Xf from functions f to tensor fields
(e.g. differential forms). In a vector bundle V of rank k, every point x ∈ M has an open neighborhood
U ⊂M and a smooth vector bundle isomorphism

V |U = U × Rk.

In this way, the standard basis (e1, . . . , ek) of Rk defines local sections e1, . . . , ek of C∞(V |U ). At every
point x ∈ U , the evaluations e1(x), . . . , ek(x) define a basis of Vx. Therefore any section Y ∈ C∞(V ) may
be expressed locally as

Y |U =

k∑
i=1

Y iei

for smooth coefficient functions Y i : U → R. We call (e1, . . . , ek) a local frame of V over U . If we choose
local coordinates (x1, . . . , xn) on U we could try to define

∇X(Y ) =
∑

Xi(∂iY
j)∂j .

However, this depends on the choice of trivialization of V and on the choice of local coordinates (x1, . . . , xn).

In general, we make the following definition:

Definition 2. A connection on V is an R-linear map

∇ : C∞(TM)⊗R C
∞(V )→ C∞(V ), (X,Y ) 7→ ∇XY

satisfying the following properties for f ∈ C∞(M):

1. ∇fXY = f∇XY ,

2. ∇X(fY ) = (Xf)Y + f∇XY .
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We call ∇XY the covariant derivative of Y in direction of X. For fixed Y the map X 7→ ∇XY is C∞(M)-
linear. However, for fixed X the map Y 7→ ∇XY is only R-linear. On the exercise sheets we will see that
the set of all connections is an affine space over Ω1(End(V )) and that the value of ∇XY at x ∈M depends
only on the value of Y in a neighborhood of x. Hence the covariant derivative is a local operator.

By choosing trivializations V |U = U ×Rm and TM |U = U ×Rn we may define functions Γkij : U → R by
the equations

∇∂iej =
∑

Γkijek.

(as above, the sections ej correspond in the trivialization of TM |U to the standard basis of Rn.) The
functions Γkij are called the Christoffel symbols of ∇ (with respect to the given trivializations). Then the
covariant derivative of Y = Y jej may be expressed as

∇i(Y jej) = (∂iY
j)ej + Y jΓkijek. (1)

Here we have used the notation ∇i = ∇ei . By defining

ej 7→
∑

Γkijek

we get an element of C∞(End(V )). We identify a section Y with a smooth map (Y 1, . . . , Y m) : U → Rm.
Formula (1) may be restated as

∇iY = ∂iY + Γi · Y
where Γi = Γkij is viewed as an (m×m)-matrix with values in C∞(U), the row index being k and the column
index being j. In this sense we have the equation

∇i = ∂i + Γi.

On the other hand, any n-tuple of sections Γ1, . . . ,Γn ∈ C∞(End(V )) defines a connection on V |U by setting
∇i = ∂i + Γi.

1.7 Parallel transport
The geometric interpretation of a covariant derivative is that it gives a notion of parallel transport. Let
γ : [a, b] → M be a smooth curve in M . A section of V along γ is a smooth map X : [a, b] → V with
X(t) ∈ Vγ(t) for all t ∈ [a, b] (i.e. a section of the pullback of V along γ).

A covariant derivative on V also determines a covariant derivative ∇t on sections along γ, uniquely
characterized by the following conditions:

1. ∇t(X + Y ) = ∇t(X) +∇t(Y )

2. ∇t(fX) = df
dtX + f · ∇tX for smooth f : [a, b]→ R

3. For a section Y of V and X(t) = Y (γ(t)) we have ∇tX = ∇γ′(t)Y .

This follows easily by choosing local coordinates (x1, . . . , xn) and a local frame (e1, . . . , ek) of V . Then
a section Y along γ may be written as

Y =
∑

Y jej

for smooth Y j : [a, b]→ R. It is necessary and sufficient that

∇tY =
∑ dY i

dt
ei + Y i∇γ′(t)ei

We have

∇γ′(t)Y =
dγi

dt
∇iY =

dγi

dt
(∂iY

jej + Y j∇iej) =
dY j

dt
ej + Y j∇γ′(t)ej

This proves 3. from above.
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Definition 3. A section Y of V along γ is called parallel if

∇tY = 0.

This equation is an ordinary linear differential equation of first order on the space of sections of V along
γ on the coefficient functions (Y 1, . . . , Y k). For any given initial value Y (0) ∈ Tγ(0)

∼= Rn the general theory
of such equations gives us a unique solution of this differential equation. The resulting vector field Y is called
the parallel extension of Y (0) along γ. From the uniqueness of the solution of such equations we see that
linearly independent choices of Y (0) induce linearly independent parallel translates Y (t) for all t ∈ [a, b].
Choosing a basis (e1, . . . , ek) of Vx we therefore obtain a unique parallel frame (e1, . . . , ek) of V along γ.

Suppose that X ∈ TxM and that γ : (−ε,+ε) → M is a curve with γ′(0) = X. Let (e1, . . . , ek) be a
parallel frame along γ. For a section Y of V we may write

Y (γ(t)) = Y j(t)ej

for smooth functions Y i : (−ε,+ε)→ R. For X = Xi∂i we then have

∇XY = (∇XY j)ej =
∑

Xi(∂iY
j)ej

which is similar to the naive formula for the connection from above.

Remark 4. We have seen that a covariant derivatives induce a parallel transport along curves. In fact, the
converse also holds.

In general, the parallel transport depends strongly upon the curve γ. Thus if γ̃ is another curve from
γ(0) to γ(1), the parallel transport along γ̃ is different from that along γ.

1.8 Riemannian metrics
Suppose we are given a fiber wise inner product (−,−) on V . That is, let (−,−) be a smooth map V ⊕V → R
that restricts on every fiber Vx, x ∈M , to an inner product (−,−)x : Vx × Vx → R.

If V |U = U × Rk is a trivialization of V , then we get a map

U → Rk×k

which associates to every x ∈ U the matrix representing the inner product (−,−)x for the basis (e1, . . . , ek)
of Rk. Using a partition of unity one sees that every vector bundle admits such a inner product. The set of
all such inner products is convex. An inner product on the tangent bundle TM →M is called a Riemannian
metric.

Definition 5. A covariant derivative ∇ on V is compatible with the inner product (−,−) if parallel transport
along every curve γ : [a, b]→M preserves the inner product. That is, for all parallel sections Y1, Y2 of V we
require that

(Y1(t), Y2(t)) = (Y1(a), Y2(a)) ∀t ∈ [a, b].

Proposition 6. A covariant derivative is compatible with (−,−) precisely when

∇X(Y1, Y2) = (∇XY1, Y2) + (Y1,∇XY2)

for all X ∈ C∞(TM), Y1, Y2 ∈ C∞(V ).

Recall here that we use the notation ∇Xf = X(f) for functions f ∈ C∞(M).

Proof. See exercise sheet 1.
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Theorem 7. Let (M, g) be a Riemannian manifold. Then there is a unique connection ∇ on TM compatible
with g which in addition is symmetric (or torsion-free). This means that

∇XY −∇YX = [X,Y ] ∀X,Y ∈ C∞(TM).

This connection is called the Levi-Civita connection on (M, g).

Here, [X,Y ] is the commutator of vector fields X,Y . Identifying vector fields with derivations C∞(M)→
C∞(M), the commutator is given by the derivation

[X,Y ]f = X(Y (f))− Y (X(f)).

In local coordinates,

(XY − Y X)(f) = Xi∂i(Y
j∂jf)− Y j∂j(Xi∂if)

= Xi(∂iY
j∂jf + Y j∂i∂jf)− Y j(∂jXi∂if +Xi∂j∂if)

= (Xi∂iY
j∂j − Y j∂jXi∂i)f

Here we have used the commutativity of partial derivatives. This computation gives a formula for the
commutator in local coordinates.

Proof of Theorem 7. Compare with [Roe]. Letting gjk = (∂j , ∂k), the compatibility of ∇ with g gives

∂igjk =
∑
a

Γaijgak + Γaikgaj (2)

and by permuting (i, j, k) we get

∂jgki =
∑
a

Γajkgai + Γajigak (3)

∂kgij =
∑
a

Γakigaj + Γakjgai (4)

The symmetry of ∇ simply means Γaij = Γaji. By calculating (2)+(3)-(4) we get∑
a

gakΓaij =
1

2
(∂igjk + ∂jgki − ∂kgij)

Since at every point gak is an invertible matrix, we see that Γaij is uniquely determined by g. Conversely,
this equation may used as a definition which has the required properties.

1.9 Curvature
Definition 8. Let ∇ be a connection on V → M . For X,Y ∈ C∞(TM) and Z ∈ C∞(V ) we define the
curvature transformation by

K(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z.

It may be viewed as a map
C∞(TM)⊗ C∞(TM)⊗ C∞(V )→ C∞(V ).

Note that ∇[X,Y ]Z = 0 for coordinate vector fields X = ∂i, Y = ∂j .

Proposition 9. K is a tensorial in all of its three arguments. That is,

K(fX, Y )Z = K(X, fY )Z = K(X,Y )fZ = fK(X,Y )Z.

8



Proof. For example, using [fX, Y ] = f [X,Y ]− Y (f)X we have

K(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z − f∇Y∇XZ −∇Y (f)∇XZ − f∇[X,Y ]Z +∇Y (f)∇XZ
= fK(X,Y )Z.

Moreover, K(X,Y ) is antisymmetric in X,Y . Hence we may view K as an element K ∈ Ω2(End(V )).

Remark 10. For a finite-dimensional vector space V , the exterior power ΛmV ∗ may be identified with the
space of antisymmetric maps V ⊗m → R. This identification is given by

ϕ1 ∧ . . . ∧ ϕm 7→
∑
σ

sgn(σ)ϕσ(1) ⊗ . . .⊗ ϕσ(m),

where we sum over the symmetric group on m letters. Here, ϕσ(1) ⊗ . . . ⊗ ϕσ(m) is the map that takes
v1 ⊗ · · · ⊗ vm to ϕσ(1)(v1) · · ·ϕσ(m)(vm). Note also that some authors use a different convention, where a
factor 1/m! is introduced.

We return now to a Riemannian manifold (M, g) with its Levi-Civita connection. We then write R = K.
Let (e1, . . . , en) be local frame for (TM, g). Then we may introduce functions (Riljk) by the requirement

R(ej , ek)el =
∑

Riljkei.

For the Levi-Civita connection, the transformation R has a number of symmetries (whose verification is a
tedious calculation):

R(X,Y )Z +R(Y,X)Z = 0

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 First Bianchi Identity
(R(X,Y )Z,W ) + (R(X,Y )W,Z) = 0

(R(X,Y )Z,W )− (R(Z,W )X,Y ) = 0

(5)

We may also view R as a 4-tensor g(R(X,Y )Z,W ). It has the components

Riljk = gisR
s
ljk = g(R(ej , ek)el, ei) = g(R(ei, el)ek, ej).

1.10 Ricci and scalar curvature
Using the curvature tensor we may form the Ricci curvature

Ric(Y, Z) = tr(X 7→ R(X,Y )Z),

which is symmetric in Y, Z by the last equation in (5). The components of Ric are

Ricab = Ric(ea, eb) = Riaib.

This (2, 0)-tensor may also be viewed as an endomorphism Rc: TM → TM , determined by the formula
(here we use the non-degeneracy of the metric g)

Ric(X,Y ) = g(X,Rc(Y )).

In components, Rcba = gbjRicja, where (gij) denotes the inverse of the matrix (gij). The scalar curvature
κ : M → R is defined by taking the trace again:

κ = scalg = tr(Rc) = Rcaa = gabRicab

Sometimes we write scalg instead of κ (which is preferred by Roe).
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1.11 Normal coordinates
Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇.

Definition 11. A curve γ : [a, b] → M is called a geodesic if the acceleration ∇tγ̇ = 0 vanishes, where the
velocity γ̇ is viewed as a vector field along γ.

Using the compatibility of ∇ with g we see that

d

dt
g(γ̇, γ̇) = 2g(∇tγ̇, γ̇).

Hence the velocity of a geodesic ‖γ̇‖ is constant. In local coordinates, γ = (γ1, . . . , γn) and the defining
condition for a geodesic becomes

0 = ∇tγ̇ = γ̈j∂j + γ̇j∇γ̇i∂i∂j = (γ̈k + γ̇iγ̇jΓkij)∂k

This leads to the geodesic equations

γ̈k + γ̇iγ̇jΓkij = 0 (k = 1, . . . , n).

From the theory of ODEs of second order we obtain:

Theorem 12. Through every point p ∈ M there exists a unique1 geodesic γ : (−ε, ε) → M , γ(0) = p, with
given velocity vector γ̇(0) = v ∈ TpM .

Using geodesics we may form the exponential map in Riemannian geometry:

exp: U →M, v 7→ γv(1)

is defined in some neighborhood U ⊂ TpM of 0. Here γv denotes the unique geodesic with γ(0) = p, γ̇(0) = v.
This defines a smooth map and the differential of exp at 0 is the identity map (see the exercise sheet)

T0(TpM) ∼= TpM → TpM.

By the Inverse Function Theorem, shrinking if necessary the neighborhood U , we obtain a diffeomorphism
exp: U → exp(U) onto its open image exp(U) ⊂M .

By choosing of an orthonormal basis ek in TpM we may view U as an open subset of Rn. Thus exp−1

gives us a local chart on exp(U) ⊂ M and correspondingly normal coordinates (x1, . . . , xn) based at p on
M . The correspondence is given by

U 3 (x1, . . . , xn) 7→ exp(x1e1 + · · ·+ xnen) ∈M.

Clearly, we have gij(p) = δij for normal coordinates based at p.

Proposition 13. In normal coordinates based at p, all the Christoffel symbols Γkij(p) = 0 vanish at p.

Proof. We first observe that γv : t 7→ exp(tv) for v ∈ Rn represents a geodesic through p in normal coordinates
based at p, so that ∇tγ̇(0) = 0. This follows because γtv(s) = γv(ts) on behalf of the uniqueness of geodesics.
We then get

0 = ∇∂i+∂j (∂i + ∂j) = ∇i∂i +∇j∂j + 2∇i∂j = 2∇i∂j

Remark 14. 1. On a Riemannian manifold, we may introduce the distance

d(p, q) = inf{length(γ) | γ : [0, 1]→M,γ(0) = p, γ(1) = q}.

This defines a metric d on M .
1More precisely, a unique germ of a geodesic
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2. For any p ∈ M we find ε > 0 so that any q with d(p, q) < ε may be joined to p by a unique constant
speed geodesic γ of constant velocity ‖γ̇‖ (here we have used that ∇ is symmetric).

3. In normal coordinates, the ball of radius ε in U ⊂ TpM corresponds to the d-ball of radius ε in M .

4. The Theorem of Hopf-Rinow asserts that (M,d) is a complete metric space precisely when any two
points p, q on M may be joined by a geodesic (geodesic completeness).

1.12 Families of geodesics and Jacobi fields
Consider a smooth map ϕ : R2 ⊃ U →M . We will use the notation

∂sϕ =
∂ϕ

∂s
(s, t), ∂tϕ =

∂ϕ

∂t
(s, t).

This defines two vector fields along ϕ. For instance, ∂sϕ(s, t) ∈ Tϕ(s,t)M is the velocity at s of the curve
ϕ(s, t), where t is being held fixed. Since ∇ is symmetric, we have (see exercise sheet 2)

∇t∂sϕ = ∇s∂tϕ. (6)

Suppose all ϕ(s,−) are geodiscs. The variational vector field or the Jacobi field is then defined by

J(t) =
∂

∂s

∣∣∣∣
s=0

ϕ(−, t) = ∂sϕ(0, t)

It is a vector field along γ(t) = ϕ(0, t). Using (6) and the definition of R we find

∇t∇t∂sϕ = ∇t∇s∂tϕ = ∇s∇t∂tϕ+R(∂tϕ, ∂sϕ)∂tϕ

By evaluating this expression at s = 0 one gets the following:

Proposition 15. Suppose every ϕ(s,−) is a geodesic. Then we have the Jacobi equation

∇2
tJ = R(γ̇, J)γ̇.

1.13 Geometric interpretation of curvature via Taylor expansion of the metric
Proposition 16. Let (x1, . . . , xn) be normal coordinates based at p ∈M . Near p we then have an expansion

gij = δij +
1

3
Rkijlx

kxl +O(‖x‖3), (7)

where Rkijl is the Riemannian curvature tensor at the point p.

Proof. We perform all calculations on U ⊂ TpM = Rn on which the exponential map is a diffeomorphism.
In particular, g denotes the Riemannian metric on U induced by the given Riemannian metric g on M and
the exponential map and ∇ denotes the induced covariant derivative on TU .

For α ∈ T0(U) = TpM with ‖α‖ = 1 we have a geodesic γα : t 7→ tα of unit speed in (U, g).
Using a vector β ∈ T0(U) we may form the family of geodesics

ϕ(s, t) = (α+ sβ)t.

The Jacobi field is given by J(t) = tβ along γα (we identify Ttα(U) = TpM for all t). Let f(t) = gtα(tβ, tβ),
where gtα denotes the metric g at the point tα ∈ U ⊂ TpM .

11



We calculate

f(0) = 0

f ′(t) = ∂tg(J, J) = 2g(∇tJ, J)

f ′(0) = 0

f ′′(t) = 2g(∇2
tJ, J) + 2g(∇tJ,∇tJ)

f ′′(0) = 2g0(β, β)

f ′′′(t) = 2g(∇3
tJ, J) + 6g(∇2

tJ,∇tJ)

f ′′′(0) = 6g(R(α, J)α,∇tJ)|t=0 = 0

f ′′′′(t) = 2g(∇4
tJ, J) + 8g(∇3

tJ,∇tJ) + 6g(∇2
tJ,∇2

tJ)

f ′′′′(0) = 8g0(R(α, β)α, β).

In the fifth line we use that by definition ∇tJ(0) = β, because all Christoffel symbols vanish at 0 ∈ U for
the normal coordinates (x1, . . . , xn). In the last line we use the fact that

∇t(∇2
tJ)|t=0 = ∇t(R(γ̇α, J(t))γ̇α)|t=0 = ∇t(R(α, J)α)|t=0 = R(α,∇tJ |t=0)α = R(α, β)α

where in the first equation we use the Jacobi equation and in the third equation we use the following
calculation: Consider t 7→ R(α,−)α as an endomorphism λ along γα. In our local coordinates it is given
by a time dependent matrix λji (t) so that λ(t)(∂i) = λji (t)∂j . Let J(t) = J i(t)∂i = tβi∂i, where we’ve set
β = βi∂i. Then

∇t(J i(t)λji (t)∂j) = ((J i)′(t)λji (t) + J i(t)(λji )
′(t))∂j + J i(t)λji (t)∇t∂j .

Evaluation at t = 0 and using that J(0) = 0 (hence J i(0) = 0 for all i) then gives

∇t(J i(t)λji (t)∂j)|t=0 = (J i)′(0)λji (0)∂j = βiλ(0)(∂i) = λ(0)(βi∂i) = λ(0)(β)

which is our assertion.
Altogether we obtain the expansion

g(β, β)(tα) =
f(t)

t2
= g0(β, β) +

t2

3
g0(R(α, β)α, β) +O(t3)

for t→ 0. We have
g0(β, β) = δijβ

iβj .

In order to establish equality (7) at a point q = (xi) ∈ U of small norm, we take the vector α = 1
tx
i∂i

with t chosen so that α has unit norm. Then

t2

3
g0(R(α, β)α, β) =

1

3
g0(R(xk∂k, β

i∂i)x
l∂l, β

j∂j)

=
1

3
Rkijlx

kxlβiβj .

Here Rkijl are the components of the curvature operator of g at p in the coordinates (x1, . . . , xn). We hence
get the expansion

gij(q)β
iβj = δijβ

iβj +
1

3
Rkijl(p)x

kxlβiβj +O(‖x‖3)

for x→ 0 and for all vectors β = βi∂i ∈ TpM . From polarization we deduce

gij = δij +
1

3
Rkijlx

kxl +O(‖x‖3)

as required.
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We will use this expansion in order to obtain an expansion of the volume density
√

det(g) around p.
First, using the formula

det(exp(A)) = exp(tr(A))

for any A ∈ Rn×n and writing
g = exp(C) +O(‖x‖3)

where Cij = 1
3Rkijlx

kxl we obtain

det(g) = exp(tr(C))+O(‖x‖3) = 1+tr(C)+O(‖x‖3) = 1+
1

3
δijRkijlx

kxl+O(‖x‖3) = 1−1

3
Ricklx

kxl+O(‖x‖3).

Here Rickl are the components of the Ricci tensor at p in normal coordinates (x1, . . . , xn). The Taylor
expansion

√
y = 1 +

1

2
(y − 1) +O(|y − 1|2)

for y → 1 now leads to the expansion√
det(g) = 1− 1

6
Ricklx

kxl +O(‖x‖3)

of the volume densitiy around p. This gives a very nice geometric interpretation of the Ricci tensor: Up to
a multiple it can be identified with the Hessian of the volume density around p in normal coordinates.

Theorem 17. Let ωn denote the volume of the unit ball in Euclidean space Rn. Let (M, g) be a Riemannian
manifold and let p ∈M . For the volume of the ball Br(p) of radius r around p (with respect to the Riemannian
metric g) we have the expansion

vol(Br(p)) = ωnr
n

(
1− scalg(p)

6(n+ 2)
r2 +O(r4)

)
for r → 0.

Hence the scalar curvature measures the asymptotic volume growth of small balls around p.

Proof. We have

vol(Br(p)) =

∫
Br(0)⊂(TpM,gp)

√
det(g)dvol =

∫
Br(0)

(1− 1

6
Ricklx

kxl +O(‖x‖3))dvol

Note that Br(0) is the ball of radius r measured with respect to the metric gp on TpM , because this is sent
to the ball Br(p) under the exponential map. After choice of an orthonormal basis with respect to gp we
identify TpM with Rn equipped with the standard Euclidean scalar product. In the above formula, dvol
denotes the standard measure on TpM = Rn with respect to the Euclidean metric.

Let dσ denote the standard volume element of the unit sphere Sn−1 in Rn with respect to the Euclidean
metric. First, for k 6= l we get ∫

Sn−1

xkxldσ = 0

by the change of variables formula for xk 7→ −xk. Recall that the superscripts k and l are just indices,
not exponents. The same argument shows that the expansion appearing in Theorem 17 contains only even
powers of r.

For 1 ≤ i, j ≤ n we get ∫
Sn−1

(xi)2dσ =

∫
Sn−1

(xj)2dσ

so that ∫
Sn−1

(xi)2dσ =
1

n

∫
Sn−1

dσ = ωn.

13



Summarizing we have ∫
Br(0)

xkxldvol = δkl ·
∫ r

0

∫
Sn−1

(τx)k(τx)lτn−1dσdτ

= δkl ·
rn+2

n+ 2

∫
Sn−1

xkxldσ

= δkl ·
ωn
n+ 2

rn+2.

This yields the formula ∫
Br(0)

Rickl · xkxldvol = ωn
scal(p)

n+ 2
rn+2

implying the claim of Theorem 17 .

2 Dirac bundles and Dirac operators

2.1 The Clifford Algebra
As a motivating example assume that S is a (real or complex) vector space together with a collection of
linear maps J1, . . . , Jn : S → S satisfying the following identities:

• J2
i = −IdS for all i,

• JiJj = −JjJi for alle i 6= j .

In this case we define the Dirac operator D : C∞(Rn, S) → C∞(Rn, S) (where C∞(Rn, S) is the space of
smooth functions Rn → S) by

D(f) :=

n∑
i=1

Ji ◦
∂

∂xi
.

This is a linear differential operator whose square is equal to the Laplace operator:

D2 = ∆ = −
n∑
i=1

∂2

∂x2
i

.

It was found by Paul Dirac (1928) in his description of the quantum mechanical behavior of fermions. Lorentz
invariance forces the relevant differential operator to be of first order.

Spin geometry arises out of the attempt to replace Rn by an arbitrary Riemannian manifold (M, g) and
hence to define the Dirac operator in a coordinate independent way.

Definition 18. Let (V, (−,−)) be a Euclidean vector space of dimension n. The Clifford algebra Cl(V ) is
defined as the quotient of the free tensor algebra

Cl(V ) =

∞⊕
r=0

V ⊗r

/
I

modulo the ideal I generated by all elements of the form v ⊗ v + ‖v‖2 for v ∈ V .

This is an algebra with unit element 1 ∈ R =
⊗0

V and it contains V =
⊗1

V as a linear subspace.
Elements in the Clifford algebra are finite linear combinations of monomials v1v2 . . . vr (r ∈ N) subject to
the relations

• vivj = −vjvi if vi ⊥ vj ,

• v2
i = −‖vi‖2.

Example 19. There are isomorphisms of R-algebras Cl(1) ∼= C and Cl(2) ∼= H.
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2.2 Relation to the Exterior Algebra
Recall that an element of the exterior algebra Λ∗V may be written as a sum of elements

v1 ∧ . . . ∧ vr vi ∈ V, r ∈ N.

More formally, Λ∗V = TV/J is the quotient of the tensor algebra TV =
⊕

r≥0 V
⊗r modulo the ideal J

generated by elements of the form v ⊗ v for v ∈ V . We will compare the vector space Cl(V ) with Λ∗(V ) via
the map

λ : ΛkV → Cl(V ), v1 ∧ . . . ∧ vk 7→
1

k!

∑
σ

sgn(σ)vσ(1) · · · vσ(k). (8)

Proposition 20. The maps (8) define an isomorphism λ : Λ∗(V )→ Cl(V ) of vector spaces (not of algebras).

Proof. Consider the canonical projection

π :
⊕
r≥0

V ⊗r → Cl(V )

and let Cl(k)(V ) = π
(⊕k

r=0 V
⊗r
)
⊂ Cl(V ). For each k we have an induced map

Λk(V )→ Cl(k)(V )/Cl(k−1)(V ), v1 ∧ . . . ∧ vk 7→ v1 · · · vk

which is induced by (8) and clearly surjective. Hence the map Λ∗(V )→ Cl(V ) is also surjective.
We shall prove that dim Cl(V ) = 2n, which will then complete the proof, as dim Λ∗(V ) = 2n as well.

Recall that a Z/2-graded algebra is an algebra C with a decomposition C = C0 ⊕ C1 with CiCj ⊂ Ci+j ,
taking indices mod two. It is called graded commutative if xy = (−1)ijyx whenever x ∈ Ci, y ∈ Cj . Given
two graded commutative algebras C = C0 ⊕ C1, D = D0 ⊕D1, their graded tensor product is again graded
by

(C⊗̃D)0 = (C0 ⊗D0)⊕ (C1 ⊗D1)

(C⊗̃D)1 = (C1 ⊗D0)⊕ (C0 ⊗D1)

The multiplication on C⊗̃D is given by

(c1 ⊗ d1)(c2 ⊗ d2) = (−1)|d1||c2|(c1c2)⊗ (d1d2)

and is also graded commutative.
An important example is the Clifford algebra, which is graded commutative, where we set

Cl0(V ) = π

⊕
r≥0

V ⊗2r

 , Cl1(V ) = π

⊕
r≥0

V ⊗2r+1

 .

Alternatively, consider α : V → V, α(v) = −v. Then α induces a map Cl(V ) → Cl(V ) since α(v) · α(v) =
v ·v = −‖v‖2. Then Cl0(V ) is the (+1)-eigenspace and Cl1(V ) is the (−1)-eigenspace of this map. Sometimes
we call Cl0(V ) the even part of Cl(V ) and Cl1(V ) the odd part of Cl(V ). Note that the even part forms a
subalgebra of Cl(V ), but not the odd part.

Now if V is the orthogonal direct sum of V1 and V2, then we have

Cl(V ) ∼= Cl(V1)⊗̃Cl(V2).

For the proof, we define two homomorphisms inverse to each other. First,

V = V1 ⊕ V2 → Cl(V1)⊗̃Cl(V2), (v1, v2) 7→ v1 ⊗ 1 + 1⊗ v2
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induces an algebra map f : Cl(V ) → Cl(V1)⊗̃Cl(V2) because (v1 ⊗ 1 + 1 ⊗ v2)2 = −‖v1‖2 − ‖v2‖2 =
−‖(v1, v2)‖2.

The map g : Cl(V1)⊗̃Cl(V2)→ Cl(V ) is induced by the bilinear map

Cl(V1)× Cl(V2)→ Cl(V ), (x, y) 7→ x · y

where we view x ∈ Cl(V ) by the canonical map Cl(V1)→ Cl(V ) induced by the inclusion V1 ↪→ V → Cl(V )
and similarly for y.

It is a straightforward calculation that f and g are indeed inverse to each other.
Since Cl(R) = C and since we may orthogonally decompose V = V1 ⊕ · · · ⊕ Vn into 1-dimensional

subspaces, it follows that
Cl(V ) = Cl(V1)⊗̃ · · · ⊗̃Cl(Vn), (9)

which has dimension 2n.

From (9) we also see the following:

Proposition 21. Let (v1, . . . , vn) be a basis of V . Then the elements

vi1 · · · vik i1 < · · · < ik, 0 ≤ k ≤ dimV

form a basis of Cl(V ). Hence dimR Cl(V ) = 2n.

For v ∈ V we define the contraction by v as

ιv : ΛkV → Λk−1V, v1 ∧ · · · ∧ vk 7→
k∑
i=1

(−1)i+1(v, vi)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk.

Roe considers the closely related operator vy− := −ιv. The contraction has the following properties:

1. ιvιvω = 0. It follows from the universal property that ι induces a map Λ∗(V )× Λ∗(V )→ Λ∗(V ).

2. Under the canonical isomorphism Λ(V ) ∼= Λ(V ∗) (given by taking the k-th exterior power of the map
V ∼= V ∗, v 7→ (v,−)) the contraction corresponds to the map

ιv : Λk+1(V ∗)→ Λk(V ∗),

(ιvω)(X1, . . . , Xk) = ω(v,X1, . . . , Xk)

Again, notice that working with Roe’s operator we have (vyω) = −ω(v,X1, . . . , Xk)

Proposition 22. Under the isomorphism λ : Λ∗V → Cl(V ) of vector spaces defined above, the multiplication
on Cl(V ) corresponds to the product

Λ∗(V )× Λ∗(V )→ Λ∗(V ), (v, ω) 7→ v ∧ ω − ιvω = v ∧ ω + vyω.

Proof. Fix v ∈ V and extend v = v1 to an orthonormal basis (v, v2, . . . , vn). Suppose w = vi1 ∧ · · · ∧ vik .
Then in the Clifford algebra we have

λ(v)λ(w) = vvi1 · · · vik =

{
v1vi1 · · · vik = λ(v ∧ w) i1 > 1

−λ(vi2 ∧ · · · ∧ vik) = −λ(ιvw) i1 = 1.

This equals λ(v ∧ w − ιvw) in both cases.
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2.3 Hodge Star Operator
Let (v1, . . . , vn) be a positively ordered orthonormal basis of V . The volume element is defined by

vol = v1 ∧ · · · ∧ vn ∈ Λn(V ).

The inner product of V is extended to ΛkV by declaring vi1 ∧ . . . ∧ vik to be an orthonormal basis of
ΛkV .

Definition 23. The Hodge star operator ∗ : ΛkV → Λn−kV is defined by the relation

(α, β)vol = β ∧ ∗α ∀β ∈ ΛkV.

In particular, ∗(v1 ∧ · · · ∧ vk) = vk+1 ∧ · · · ∧ vn. A useful formula is

∗(vi1 ∧ · · · ∧ vik) = ±vj1 ∧ · · · ∧ vjn−k

where the j’s are chosen so that (i1, . . . , ik, j1, . . . , jn−k) is a permutation of (1, . . . , n) and the sign is chosen
according to the parity of this permutation.

Lemma 24. vyω = (−1)nk+n+1 ∗ (v ∧ ∗ω) for ω ∈ ΛkV . In this sense the contraction is dual to the wedge
product.

2.4 Clifford Modules
Definition 25. A real (resp. complex) Clifford module for Cl(V ) is a real (resp. complex) vector space S
together with an R-algebra map

ρ : Cl(V )→ Hom(S, S).

(more precisely, HomR(S, S) resp. HomC(S, S)) Equivalently this is given by an R-linear map c : V →
Hom(S, S) such that c(v)2 = −‖v‖2 · idS.

Example 26. In the situation at the beginning of this section we can regard S as a Clifford module for
Cl(n) by setting ei 7→ Ji for the standard orthonormal basis (e1, . . . , en) of Rn and extending this map to an
algebra map Cl(Rn) → Hom(S, S). More generally, for a finite-dimensional Euclidean vector space V and
any choice of orthonormal basis (v1, . . . , vn) of V the Dirac operator on C∞(V, S) is given by

D(f) =

n∑
i=1

vi · ∂if,

where, as usual, ∂i = ∂
∂vi is the derivative in the direction vi.

This is hence a description of the Dirac operator which is independent of the choice of an orthonormal
basis of V : suppose wj = gjivi for (gji) ∈ O(n). Then∑

wj
∂

∂wj
=
∑
i,j

gjivig
jk ∂

∂vk
=
∑

vi
∂

∂vi

since
∑
j g

jigjk = δik.

In this lectures, we will usually restrict our attention to complex Clifford modules S.

Example 27. S = Cl(V ) is itself a Clifford module, where the module structure is given by multiplication
in the Clifford algebra, i.e. by Cl(S)× S → S, (v, w) 7→ v · w.
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Now let (M, g) be a Riemannian manifold. Because each fibre TpM of the tangent bundle is a Euclidean
vector space, we can form its Clifford algebra Cl(TpM). This construction can be carried out on local
trivializations of TM and hence yields a vector bundle Cl(TM) → M of dimension 2n. This bundle is a
bundle of algebras in the sense that we have a smooth map

Cl(TM)⊕ Cl(TM)→ Cl(TM)

which restricts to Clifford multiplication in each fibre. We call the bundle Cl(TM) → M the bundle of
Clifford algebras associated to TM →M .

In the following we use the notion Hermitian bundle for a complex vector bundle V → M which is
equipped with a fiber wise Hermitian inner product (−,−). We also could call these bundles complex
bundles with inner product. A compatible connection is a connection ∇ on V which is compatible with the
Hermitian structure in the sense of Definition 5, respectively Proposition 6.

Definition 28. Let M be a Riemannian manifold. A bundle of Clifford modules or Clifford-module bundle
or briefly Clifford bundle for Cl(TM) is a Hermitian vector bundle S → M together with a smooth bundle
map

Cl(TM)⊕ S → S (10)

with the following properties:

1. The map (10) restricts to a Clifford module structure Cl(TpM)× Sp → Sp on each fiber over p ∈M .

2. Clifford multiplication is compatible with the Hermitian structure on S: If v ∈ C∞(TM) is a (local)
section of constant length 1, then

(vs1, vs2) = (s1, s2) ∀s1, s2 ∈ C∞(S).

Note that this is equivalent (using the relation v2 = −‖v‖2 in Cl(V )), that Clifford multiplication with
tangent vectors is skew adjoint (this is the condition given by Roe):

(vs1, s2) + (s1, vs2) = 0 ∀v ∈ C∞(TM), s1, s2 ∈ C∞(S).

We remark that any complex bundle S →M with a fiber wise Clifford-module structure can be equipped
with a Hermitian inner product so that the second condition above is satisfied, cf. Exercise 4 on Exercise
sheet 3. There is an analogous notion of real Clifford-bundles, but this will be less important for us.

Definition 29. Let M be a Riemannian manifold. A Dirac bundle is a Clifford module bundle S → M
together with a connection ∇S on S which is compatible with the Hermitian structure and with the Clifford
module structure in the sense that

∇SX(vs) = ∇LC
X (v) · s+ v∇SX(s)

for all X, v ∈ C∞(TM), s ∈ C∞(S) using the Levi-Civita connection ∇LC on TM .

Remark 30. What we call Dirac bundle is called Clifford bundle by Roe. We find the above notions less
confusing.

Definition 31. Let S be Dirac bundle on a Riemannian manifoldM . Then the corresponding Dirac operator
is the composition

D : C∞(S)
∇S−−→ C∞(T ∗M ⊗ S) ∼= C∞(TM ⊗ S)→ C∞(S)

In terms of a local orthonormal frame (vi) of TM this may be rewritten as

Ds =
∑

vi · ∇vis,

similar as before (note that the Hermitian metric plays no role in this definition).
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2.5 The Laplacian on Manifolds
Definition 32. Let E → M be a vector bundle with connection ∇. The second covariant derivative of
s ∈ C∞(E) is

∇2
X,Y (s) = ∇X∇Y (s)−∇∇XY (s).

The second term has been inserted to make this a tensor in both X and Y . Given an inner product on TM
(i.e. a Riemannian metric on M), the connection Laplacian is

∆(s) = −
n∑
i=1

∇ei,ei(s) (11)

for a local orthonormal frame (ei) of TM . It may be regarded as a map ∆: C∞(E)→ C∞(E).

Note that this is the usual Laplace operator on C∞(Rn) when M := Rn is equipped with the standard
Euclidean structure and smooth functions on M are regarded as sections in the trivial bundle E = M ×R→
M .

Theorem 33 (Weitzenböck Formula). Let S →M be a Dirac bundle. Then we have

D2(s) = ∆(s) +K(s), ∀s ∈ C∞(S),

where K ∈ C∞(End(S)) is the endomorphism of S given by K(s) =
∑
i<j eiej ·KS(ei, ej)(s) for the curvature

KS of S.

Note that ∆ and D2 are differential operators of second order, while K is an endomorphism of S (a
differential operator of 0th order). The Weitzenböck formula says that the Dirac operator squares to the
Laplacian, up to an operator of order 0 (i.e. up to a section in the endomorphism bundle of S), which is
related to the curvature of the connection ∇S on S.

Proof. Choose an orthonormal frame (ei) of TM around p ∈M such that for all i, j we have

∇ei(ej)(p) = 0

at p (one says the frame is synchronous in p). This can be done by parallel extending an orthonormal basis
of TpM along radial geodesics starting at p. We compute in the point p ∈M :

D2(s)(p) =
∑
i,j

ej∇ej (ei∇ei(s))

=
∑
i,j

ejei∇ej∇ei(s)

= −
∑
i

∇2
i (s) +

∑
j<i

ejei(∇ej∇ei −∇ei∇ej )(s) = ∆(s)(p) +K(s)(p)

where we have used [ei, ej ](p) = ∇eiej −∇ejei = 0 at p.

2.6 The Bundle of Exterior Forms as a Dirac Bundle
Let S = Cl(TM)⊗C→M . This is a complex Clifford module in an obvious way. Recall that a connection
may be defined by specifying which frames are parallel along a given curve γ. Let (e1, . . . , en) be a parallel
orthonormal frame of TM along γ. We then define the connection (and the Hermitian metric) on S by
declaring the frame

(ei1 · · · eik)1≤i1<···ik≤n, 0≤k≤n,

to be a parallel orthonormal frame of S along γ.
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We prove (vs1, vs2) = (s1, s2). For this, extend e1 = v to an orthonormal frame (e1, . . . , en). Then by
considering cases one immediately checks

(vei1,...,ik , vej1,...,jk) = (ei1,...,ik , ej1,...,jk).

The compatibility of the Clifford multiplication with the connection follows from the Leibniz rule (when
working in a parallel frame).

We wish to explicitly identify D and K. Recall that Cl(V ) ∼= Λ∗V , where v · ω = v ∧ ω − ιvω. Therefore
S ∼= Λ∗TM ⊗ C ∼= Λ∗(T ∗M) ⊗ C identifies with the bundle of differential forms. To identify the Dirac
operator D we begin with the following lemma:

Lemma 34. Let (εi) be the frame dual to some orthonormal frame (ei). For ω ∈ C∞(ΛkT ∗M) we have

dω =

n∑
i=1

εi ∧∇eiω

δω =

n∑
i=1

eiy∇eiω

Proof. It is easy to see that if this formula holds in one orthonormal frame, it holds in any. Let (x1, . . . , xn)
be normal coordinates in p. The coordinate vector fields (∂1, . . . , ∂n) then give an orthonormal basis at p.
Using these, we shall prove that the above formula holds in p. Let ω =

∑
I ωIdx

I . Then since ∇∂i∂j = 0 we
have at p

dω(p) =

n∑
i=1

∂ωI
∂xi

dxi ∧ dxI =

n∑
i=1

dxi ∧∇∂iω,

as required. Recall that the codifferential of a k-form ω ∈ Ωk(M) is defined by

δ(ω) = d∗(ω) = (−1)nk+n+1 ∗ d(∗ω) ∈ Ωk−1(M). (12)

(the operator d∗ may be viewed as the adjoint of d for the L2 inner product on Ω∗(M) we will consider later)
The second formula now follows from Lemma 24:

d∗ω = (−1)nk+n+1
∑
∗(ei ∧∇ei(∗ω)) = (−1)nk+n+1

∑
∗(ei ∧ ∗∇ei(ω))

=
∑

eiy∇eiω

It follows that

Dω =
∑

ei · ∇eiω =
∑

εi ∧∇eiω +
∑

eiy∇eiω = dω + d∗ω, (13)

which is called the de Rham operator of M . The corresponding connection Laplacian

D2 = (d+ d∗)2 = dd∗ + d∗d

is called the Hodge Laplacian ofM . In this case the Weitzenböck formula D2 = ∆+K contains the operator

K(ek) =
∑
i<j

eiejR(ei, ej)ek

=
1

2

∑
i,j,l

eiejel(R(ei, ej)ek, el) =
1

2

∑
i,j,l

eiejelRlkij .

for the curvature R of the Levi-Civita connection onM . If i, j, l are distinct, by the Bianchi identity we have

eiejel = ejelei = eleiej , Rlkij +Rikjl +Rjkli = 0.
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All such summands add up to zero. If i = j we have Rlkij = 0, if i 6= l = j we have

1

2

∑
i,j

−eiRjkij =
1

2

∑
i

eiRicki.

Finally, for i = l 6= j we have
1

2

∑
ejRikij =

1

2

∑
ejRickj .

Therefore
K(ek) =

∑
Ricakea = Rc(ek)

is the Ricci transformation. Hence
D2 = ∆ + Rc.

For M closed oriented with dimH1(M ;R) 6= 0 this may be used to deduce that M does not admit a
metric of positive Ricci curvature (meaning that Ric is positive definite at every point). This argument will
be made more precise later in these lectures.

3 Spin Structures on Manifolds

3.1 Constructing Clifford Bundles as Associated Bundles
Let M be an oriented Riemannian manifold of dimension n.

In the following we will discuss a general method to construct Clifford and Dirac bundles onM . LetW be
some (complex) Clifford representation for Cl(n), equipped with a compatible (Hermitian) inner product (i.e.
vectors of length one act as isometries, or equivalently that Clifford multiplication is skew adjoint). At first
we would like to construct a Clifford bundle E →M whose fibers Ep are isomorphic to W as Cl(n)-modules.

Let (Ui)i∈I be an open cover of M , which is trivializing for TM . Choose orthogonal trivializations
φi : TM |Ui ∼= Ui × Rn with induced transition maps φj ◦ φ−1

i that may be regarded as maps

φji : Ui ∩ Uj → SO(n).

We wish to define the bundle E → M of Clifford modules by writing down trivial bundles Ui ×W and
choosing suitable transition maps ψji : Ui ∩ Ui → Aut(W ). The bundle E is then obtained by gluing the
trivial bundles Ui ×W using the transition functions:

E =

(⋃
i

(Ui ×W )

)/
∼ where ((x,w) ∈ Ui ×W ) ∼ ((x, (ψji)x(w)) ∈ Uj ×W )

These need to satisfy the following requirements:

• To get a well defined Clifford multiplication on the fibers of the resulting bundle, the transition maps
φji need to be compatible with ψji in the following way:

(φji)x(v) · (ψji)x(w) = (ψji)x(vw)

For all x ∈ Ui ∩ Uj , all v ∈ Rn and w ∈W .

• They must fulfill the cocycle condition

ψki = ψkj ◦ ψji : Ui ∩ Uj ∩ Uk → Aut(W )

for all i, j, k ∈ I with Ui ∩ Uj ∩ Uk 6= ∅.

Each v ∈ Rn of norm one induces an isometry ofW by w 7→ v ·w. We would like to use such isomorphisms
to define the maps ψji. To encapsulate the geometry of M these should be related to the SO(n)-valued
transition functions φji.

21



3.2 The Pin and Spin Group
Let (V, (−,−)) be a Euclidean vector space. We will be mostly interested in the case V = Rn.

Definition 35. The subgroup Pin(V ) of the multiplicative group Cl(V )× of invertible elements is generated
by all v ∈ V with ‖v‖ = 1. An element thus has the form

v1 · · · vk, where ‖vi‖ = 1, k ∈ N.

The Spin subgroup Spin(V ) ⊂ Pin(V ) is the set

Spin(V ) = {v1 · · · vk ∈ Pin(V ) | k even} = {v ∈ Pin(V ) | α(v) = v} = Pin(V ) ∩ Cl0(V ) ⊂ Cl0(V ).

Here we recall that α : Cl(V ) → Cl(V ) is the algebra automorphism induced by V → V , v 7→ −v. For
any v ∈ V of unit length consider the map

ρv : Cl(V )→ Cl(V ), x 7→ −vxv−1 = α(v)xv−1.

This formula makes sense for any v ∈ Cl(V )×, i.e. we have a map Cl(V )× → Aut(Cl(V )).

Lemma 36. We have ρv(V ) ⊂ V . In fact, ρv|V is the reflection across the hyperplane v⊥ orthogonal to
‖v‖ = 1.

Proof. If x = λv, then ρv(x) = −λv. On the other hand, if x⊥v, then ρv(x) = −vxv−1 = xvv−1 = x. This
proves that ρv|V is a reflection across v⊥. The first claim follows immediately.

It follows that ρv determines a group homomorphism

ρ : Pin(V )→ O(V )

and by restriction we get a homomorphism

ρ : Spin(V )→ SO(V ).

Proposition 37. The kernel of ρ : Pin(V )→ O(V ) is {±1}. Likewise, the kernel of ρ : Spin(V )→ SO(V )
is {±1}.

Proof. Let (e1, . . . , en) be an orthonormal basis of V and suppose that v = v1 · · · vk ∈ ker(ρ). We may write

v = α0 + e1α1.

where α0, α1 are polynomials in e2, . . . , en. Suppose v ∈ Cl0(V ). Then α0 ∈ Cl0(V ) and α1 ∈ Cl1(V ). Using
the assumption v ∈ ker(ρ) we get ve1 = e1v so

e1α0 − α1 = α0e1 + e1α1e1 = e1α0 + α1

Hence α1 = 0 and v itself is a polynomial in e2, . . . , en. Proceeding by induction, we see that v does not
contain any of e1, . . . , en and hence v = ±1.

Suppose on the other hand that v ∈ Cl1(V ). Then ve1 = −e1v by assumption and we have α0 ∈ Cl1(V ),
α1 ∈ Cl0(V ). Then as above we get

e1α0 − α1 = e1α0 + α1

so that α1 and we proceed again as above to see v = 0. It follows that this case does not occur.

Since every element of O(n) may be written as a product of n reflections (this is proven by diagonalizing
an orthogonal matrix over C to put it into block diagonal form), the maps ρ are surjective. These arguments
together with the previous proposition give:
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Corollary 38. Pin(V ) = {v1 · · · vk | k ≤ n, ‖vi‖ = 1}.

Proposition 39. The groups Pin(n) and Spin(n) are compact Lie groups.

Proof. The subset Cl×(n) of multiplicatively invertible elements in Cl(n) is an open subset of the finite-
dimensional vector space Cl(n) ∼= R2n . Because the product on Cl(n) is bilinear, it is smooth. The same
holds for the inversion map on Cl×(n). It follows that (Cl×(n), ·, 1) is a Lie group.

We claim that Pin(n) and Spin(n) are compact subsets of Cl×(n). Because Pin(n) and Spin(n) are also
subgroups, It then follows from the Closed Subgroup Theorem from Lie group theory that these are Lie
subgroups. In particular, they are closed submanifolds of Cl×(n).

For each k ≥ 1 we have a continuous map

λk : Sn−1 × · · · × Sn−1︸ ︷︷ ︸
k factors

→ Pin(n), (v1, . . . , vk) 7→ v1 · · · vk.

As Sn−1 × · · · × Sn−1 is compact, the image of λk is compact. By Corollary 38 Pin(n) =
⋃n
k=1 im(λk), is a

finite union of compact sets and hence itself compact. An analogous argument applies to Spin(n).

The map ρ : Pin(n) → O(n) is then a smooth map, being the restriction of the obviously smooth map
Cl×(n)→ Aut(Cl(n)), v 7→ (x 7→ α(v)xv−1).

Corollary 40. ρ : Pin(n) → O(n) and ρ : Spin(n) → SO(n) are two-fold smooth coverings. In particular,
dim Pin(n) = dimO(n) = n(n− 1)/2 and dim Spin(n) = dimSO(n) = n(n− 1)/2.

Proof. It is enough to find an open neighborhood of 1 ∈ O(n) which is evenly covered by ρ. By Proposition
37 this amounts to finding an open neighborhood U ⊂ Pin(n) of 1 ∈ Pin(n) so that U ∩ (−U) = ∅. But
this follows easily by the continuity of the map v 7→ −v on Pin(n). The case of Spin(n) follows immediately.
The dimension computations follow from the corresponding computations for O(n) and SO(n) (which is a
component of O(n)).

Example 41. 1. We know that Cl(1) = C. It follows that Spin(1) = {v1 · · · v2k | ‖vi‖ = 1, v ∈ R} = {±1}
and the map Spin(1)→ SO(1) = {1} is the constant map 1.

2. Next Cl(2) = H. Then Spin(2) = {v1 · · · v2k | vi ∈ R2, ‖vi‖ = 1}. Consider for |α|2 + |β|2 = 1 and
|x|2 + |y|2 = 1 the expression

(αi+ βj)(xi+ yj) = (−αx− βy) + (αy − βx)k =: γ0 + γ1k.

Then again |γ0|2 + |γ1|2 = 1. If we view (x, y) ∈ R2 as xi + yj we see that Spin(2) = S1 ⊂ C, using
the isomorphism 〈1, k〉R ∼= C (sending k to i). The map ρ : Spin(2)→ SO(2) takes the following form.

(η0 + η1k)(x1i+ x2j)(η0 − η1k) = (η0 + η1k)2(x1i+ x2j)

= (η0 + η1k)2(x1 + x2k)i

which shows that ρ : S1 → S1 may be identified with ρ(z) = z2.

3. On the exercise sheet, we will see that Spin(3) = S3 so that SO(3) = RP 3. In particular, π1(SO(3)) =
Z/2.

Proposition 42. The Lie group Spin(n) is connected for n ≥ 2 and simply-connected for n ≥ 3.

Proof. We have the long exact sequence for a covering

0→ π1(Spin(n))→ π1(SO(n))→ π0(Z/2)→ π0(Spin(n))→ π0(SO(n))→ 0

The space SO(n) is connected for all n. Moreover π1(SO(n)) = Z/2 for n ≥ 3. For n = 3 this follows
from SO(3) = RP 3. The result now follows by induction: consider the long exact sequence for the fibration
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SO(n − 1) → SO(n) → Sn−1. Because Sn−1 is simply-connected for n > 3 the result follows for SO(n) as
soon as it is known for SO(n− 1).

The map π0(Z/2)→ π0(Spin(n)) is the constant map, because +1 and −1 in Spin(n) may be joined by the
path (cos(t)e1 + sin(t)e2) e1 for t ∈ [0, π]. From the exact sequence it follows that π1(SO(n))→ π0(Z/2) is a
bijection and so the injection π1(Spin(n))→ π1(SO(n)) has zero image. It follows that π1(Spin(n)) = 0.

Corollary 43. For n ≥ 3 the map ρ : Spin(n)→ SO(n) is the universal covering of SO(n).

3.3 The Solution: Constructing Clifford module Bundles
We return to the problem of defining transition function ψji : Uij → Aut(W ), where W is a Cl(n)-module,
from given φji : Uij → SO(n). Let us assume that we may lift the φji along our covering map ρ : Spin(n)→
SO(n) to maps φ̃ji : Uij → Spin(n). We then attempt to define

ψji(x)(w) = φ̃ji(x) · w

in terms of the Clifford multiplication Spin(n)×W →W . Then we have the compatibility

φji(x)(v) · ψji(x)(w) = φ̃ji(x)v
(
φ̃ji(x)

)−1

φ̃ji(x) · w = φ̃ji(x) · vw = ψji(x)(vw)

In order to get a well-defined vector bundle by the clutching construction, we however also need the cocycle
condition, i.e. that the map

σijk = φ̃−1
ik · φ̃ij · φ̃jk : Uijk → Spin(n)

is always equal to one. Because our original transition functions φij satisfy the cocycle condition and since
the kernel of ρ : Spin(n) → SO(n) is {±1} it follows that σijk takes values in Z/2. Note that for every
x ∈ Uij there are two choices for φ̃ij(x), since we are lifting along a two-fold covering.

Can we modify the maps φ̃ij in a consistent way so that all σijk become the constant map 1. This kind
of obstruction problem is described by the Čech cohomology group Ȟ2({Ui};Z/2).

Definition 44. Let X be topological space with open cover U = (Ui)i∈I indexes over a totally ordered set I,
whose finite intersections Uijk··· are all empty or contractible (a so-called good cover). Define the Čech com-
plex as follows. The group Čn(U) is the free abelian group generated by all ordered tuples of indices (i0, . . . , in)

with Ui0 ∩· · ·∩Uin 6= ∅. The differential is given on a basis by ∂(i0, . . . , in) =
∑n
k=0(−1)k(i0, · · · , îk, · · · , in).

The Čech co-complex with coefficients in an abelian group G is defined as Čn(U ;G) = Hom(Čn(U);G).

We then have the following Mayer-Vietoris principle:

Proposition 45. The homology of Č∗(X) coincides with the singular homology of X. The cohomology of
Č∗(X;G) coincides with the singular cohomology of X with coefficients in G.

For a triangulated manifold this can be made concrete in the following way: Choose a triangulation of
Mn and consider the dual cell decomposition of M (where k-cells are in one-to-one correspondence to the
(n − k)-simplices on M). Let (Ui)i∈I be the covering of M where the Ui are thickenings of the top cells
in this dual decomposition. This is a good cover of M and the Čech-complex associated to this covering is
canonically isomorphic to the simplicial chain complex associated to the given triangulation. In the following
we may work with a good cover of M of this sort.

Note that for a good cover, the maps σijk considered before are constant, because they are defined on
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contractible sets. The elements σ = {σijk} ∈ Č2(U ;Z/2) define a Čech cocycle, i.e. satisfy δσ = 1:

σjklσ
−1
iklσijlσ

−1
ijk

=φ̃−1
jl φ̃jkφ̃kl(φ̃

−1
il φ̃ikφ̃kl)

−1φ̃−1
il φ̃ij φ̃jl(φ̃

−1
ik φ̃ij φ̃jk)−1

=φ̃−1
jl φ̃jkφ̃klφ̃

−1
kl φ̃

−1
ik φ̃ilφ̃

−1
il φ̃ij φ̃jlφ̃

−1
jk φ̃

−1
ij φ̃ik

=φ̃−1
jl φ̃jkφ̃

−1
ik φ̃ij φ̃jlφ̃

−1
jk φ̃

−1
ij φ̃ik

=φ̃−1
jl (φ̃jkφ̃

−1
ik φ̃ij)φ̃jlφ̃

−1
jk φ̃

−1
ij φ̃ik

=φ̃−1
jl φ̃jlφ̃

−1
jk (φ̃jkφ̃

−1
ik φ̃ij)φ̃

−1
ij φ̃ik = 1

using that φ̃jkφ̃−1
ik φ̃ij is central (it is ±1 since it maps under φ to 1).

We obtain a Čech cohomology class [σ] ∈ Ȟ2(M ;Z/2). Suppose that [σ] = 0. Then we find (λji) ∈
Č1({Ui};Z/2) with δλ = σ (so (δλ)ijk = λjkλ

−1
ik λij). Using λ we now redefine

φ̃′ji = φ̃ji · λji.

Then we get
σ′kji = σkjiλ

−1
ki λkjλji = σkji(δλ)ikj = 1.

The modified transition functions φ̃′ji therefore satisfy the cocycle identity.

Definition 46. The class w2(M) = [σ] ∈ H2(M ;Z/2) is called the second Stiefel-Whitney class of M .

It can be shown that the class of w2(M) is independent of the choice of open cover {Ui}. In summary,
we have:

Proposition 47. Let M be an oriented Riemannian manifold. Suppose w2(M) = 0. Then we may consis-
tently lift the transition functions of the tangent bundle TM to the group Spin(n). Using the Cl(n)-module
W we obtain an associated Clifford-module bundle E →M in the sense of Definition 28.

(Note that if W has an invariant inner product, this induces also an inner product on the bundle E).

It remains to define a connection on E and to understand the Cl(n)-modules W .

3.4 Interlude: Principal Bundles
We point out a more systematic view on the above construction. Let G be a Lie group.

Definition 48. A G-principal bundle is a smooth fiber bundle π : P → M with a smooth, free G-action on
P which preserves the fibers and acts fiber wise transitive on these.

Example 49. Let E →M be a rank k vector bundle. The frame bundle P (E)x = {(b1, . . . , bk) basis of Ex} =
Iso(Rk, Ex), P (E) =

⋃
x∈M P (E)x →M , is a GLk(R)-principal bundle. The action of GLk(R) on the fibers

Iso(Rk, Ex) is given by pre-composition.

Suppose the vector bundle E is trivialized on an open cover Ui, so we have E|Ui ∼= Ui×Rk. Then E may
be described in terms of the transition functions

φji : Uij → GLk(R).

The frame bundle P (E) may then be constructed by gluing the trivial bundles Ui×GLk(R) using the maps

φji · (−) : Uij → Homeo(GLk(R),GLk(R))

that take x ∈ Uij to the left multiplication map GLk(R)→ GLk(R) by the matrix φji(x).
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On the other hand, any GLk(R)-principal bundle has trivializations in which the transition functions are
given by left multiplication of a certain matrix φji(x). These may in turn be used to reconstruct a vector
bundle E.

The formalism of GLk(R)-principal bundles and the formalism of rank k vector bundles are therefore
equivalent points of view.

The existence of a Riemannian metric on E corresponds to a reduction of the structure group of P (E)
to O(k). Indeed, if E has such a metric we may consider the O(k)-principal bundle PO(E) of orthonormal
frames. On the other hand, such O(k)-valued transition may be used to define an inner product on E by
using the standard inner product on the trivial pieces Ui × Rk. These then fit together since φji is a fiber
wise isometry. An orientation on E corresponds to a reduction to SLk(R) (resp. SO(k) in the presence of
a metric). Then we restrict to positively oriented frames (resp. positively oriented orthonormal frames) to
construct principal bundles PSLk(R)(E), PSO(E).

The vector bundle E may be reconstructed as an associated bundle of P (E):

E ∼= P (E)×GLk(R) Rk = (P (E)× Rk)/ ∼

Here the equivalence relation ‘∼’ is given by (ϕg, v) ∼ (ϕgv) for g ∈ GLk(R). Locally, the frame bundle
reduces to U × GLk(R) and the associated bundle construction on U × GLk(R) × Rk identifies (x, ϕA, v)
with (x, ϕ,Av), so that the canonical map to U × Rk = E|U is an isomorphism.

Using this language, we have shown the following in the previous section:

Proposition 50. We have w2(M) = 0 precisely when we may consistently lift the SO(n)-valued transi-
tion functions to maps φ̃ji to Spin(n). This is equivalent to the existence of a Spin(n)-principal bundle
PSpin(TM) → M along with a two-fold covering map PSpin(TM) → PSO(TM) which is equivariant for the
canonical covering map ρ : Spin(n)→ SO(n).

In topological terms, this may be restated by saying that the classifying map f : M → BSO(n) lifts along
the map Bρ : B Spin(n) → BSO(n) to M → B Spin(n). The map Bρ has fiber BZ/2, which implies that
the obstruction class for such a lift is an element of H2(M ;π1(BZ/2)) = H2(M ;Z/2). This element may be
identified with the second Stiefel-Whitney class we have constructed.

Definition 51. Let M be an oriented smooth manifold. We call M a spin manifold, if w2(M) = 0.

It can be shown that ifM is spin manifold, the Clifford bundle E →M from Proposition 47 is isomorphic
to the associated bundle PSpin(TM)×Spin(n) W , where Spin(n) acts on W by Clifford multiplication.

3.5 The Connection on the Clifford Bundle E → M and the corresponding
Weitzenböck Formula

We want to turn the bundle E → M from Proposition 47 into a Dirac bundle. For this aim it remains to
construct a connection on E →M compatible with the Levi-Civita connection on TM and the inner product
on E, compare Definition 29.

From our construction (see Subsection 3.1) we have simultaneous orthogonal trivializations U × Rn ∼=
TM |U and U ×W ∼= E|U (where U ⊂M is part of a fixed open cover of M used to define E →M .)

The connection is defined as follows.
Choose a curve γ : (−ε, ε) → U through p ∈ U and let (e1, . . . , en) ∈ TpM be the standard basis in our

trivialization. Using the Levi-Civita connection we may extend these to a parallel frame (ē1(t), . . . , ēn(t))
along γ. Choose matrices A(t) ∈ SO(n), A(0) = En, with A(t)ei = ēi(t). We wish to define the parallel
transport of w ∈ W = Ep along γ. For this we (uniquely) lift the map A : (−ε, ε) → SO(n) to a map
Ã : (−ε, ε)→ Spin(n) with Ã(0) = 1.

Definition 52. The connection on E is defined by declaring w̄(t) = Ã(t) · w to be a parallel section of E
along γ. We say this connection ∇E is induced by the Levi-Civita connection.
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In local coordinates, this connection may be understood as follows (we will need this description later
when applying the Weitzenböck formula to the present situation). Recall that the Christoffel symbols of the
Levi-Civita connection are defined by

∇LC
ek

(ei) = Γjkiej .

We wish to compute ∇Eek(w) for a ‘constant section’ w ∈W . Choose a curve γ with γ′(0) = ek.

A(t)ei = ēi(t)⇒ ei = C(t)ēi(t), C(t) = A(t)−1.

Then
∇LC
k ei

∣∣
0

= ∇t|t=0(C(t)ēi(t)) = C ′(0)ēi(0) + C(0)∇t|t=0ēi = C ′(0)ei

so that C ′(0)ji = Γjki. Write
w = C̃(t) Ã(t)w︸ ︷︷ ︸

parallel for ∇E

for the lift C̃ of C to Spin(n) with C̃(0) = 1. Thus

∇Eekw
∣∣
0

= ∇t|t=0

(
C̃(t)w̄(t)

)
= C̃ ′(0)w̄(0) = C̃ ′(0)w

where C̃ ′(0) ∈ T1 Spin(n) ⊂ Cl0(n). It remains to compute T1ρ : T1 Spin(n) → T1SO(n), which maps C̃ ′(0)
to C ′(0). Since ρ is a covering map, the map T1ρ is an isomorphism.

The group Spin(n) ⊂ Cl0(n) is a submanifold of Cl0(n). Thus T1 Spin(n) may be viewed as a linear
subspace of Cl0(n):

Proposition 53. The set eiej, i < j is a basis of the vector subspace T1 Spin(n) ⊂ Cl0(n). We have

T1ρ(eiej) = 2



. . .
0 −1

. . .
1 0

. . .


where +1 is placed in row j, column i.

Proof. Consider the curve γ(t) = cos(t)+sin(t)eiej = (sin(t)ei− cos(t)ej)ej inside Spin(n). It represents the
tangent vector γ′(0) = eiej . This shows that all eiej belong to T1 Spin(n), which has dimension n(n− 1)/2
so we have found a basis. For x ∈ Rn we compute

d

dt

∣∣∣∣
0

ργ(t)(x) =
d

dt

∣∣∣∣
0

γ(t)xγ(t)−1 = eiejx− xeiej

Clearly, eiejx − xeiej is zero for x = ek, k 6= i, j. Also eiejei − eieiej = 2ej for x = ei and similarly for
x = ej .

We now rewrite C ′(0) = (Γjki) =
∑
i<j ΓjkiPij to conclude

∇Eekw =
1

2

∑
i<j

Γjkieiejw (14)

for an orthonormal frame (e1, . . . , en). We now compute the curvature. For this we work with an orthonormal
frame (e1, . . . , en) which is synchronous at p. In particular all Christoffel symbols vanish at p and at p these
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vector fields commute as [ei, ej ] = ∇eiej−∇ejei vanishes at p. In such a frame, the formula for the curvature
KTM at p simplifies toKi

ljk(p) = ∇ejΓikl−∇ekΓijl (here∇ just denotes directional derivatives of scalar valued
functions). At the point p we then have

2KE(ej , ek)(p) = ∇Ej ∇Ek −∇Ek ∇Ej
(14)
=
∑
α<β

(
∇Ej (Γβkαeαeβ)−∇Ek (Γβjαeαeβ)

)
=
∑
α<β

(
∇jΓβkα −∇kΓβjα

)
eαeβ =

∑
α<β

Kβ
αjkeαeβ =

∑
α<β

〈K(ej , ek)eα, eβ〉eαeβ

The third equality uses the fact that the frame (e1, . . . , en) is synchronous at p.

Remark 54. It is no surprise that KE(ej , ek) = 1
2

∑
α<βK

β
αjkeαeβ. Let

Pij =



. . .
0 −1

. . .
1 0

. . .


be the matrices from Proposition 53. Then the image of this element under the isomorphism T1ρ is

T1ρ(KE(ej , ek)) = T1ρ

1

2

∑
α<β

Kβ
αjkeαeβ

 =
∑
α<β

Kβ
αjkPαβ = KTM (ej , ek)

Since the connection on E is induced from the bundle PSpin(TM), as is the connection on TM , this result
can also be obtained from the general theory of connections on principal bundles.

We now examine the curvature term in theWeitzenböck formulaD2 = ∆+K, whereK(s) =
∑
j<k ejekK

E(ej , ek)s,
see Theorem 33. In our case∑
j<k

ejekK
E(ej , ek) =

1

2

∑
j,k

ejekK
E(ej , ek) =

1

8

∑
j,k,α,β

ejek〈KTM (ej , ek)eα, eβ〉eαeβ

=
1

8

∑
β

1

3

∑
j,k,α distinct

〈KTM (ej , ek)eα +KTM (ek, eα)ej +KTM (eα, ej)ek, eβ〉ejekeα

+
∑

j,k,(α=j)

〈KTM (ej , ek)ej , eβ〉ejekej +
∑

j,k,(α=k)

〈KTM (ej , ek)ek, eβ〉ejekek

 eβ

Leaving β fixed, we have used here the anti-symmetry of KTM to reduce the three-fold sum over (j, k, α)
to the case j 6= k. The remaining cases (j, k, α) pairwise disjoint, j = α, and k = α were then gathered as
individual summands. The first summand consists of three equal parts. It vanishes by the Bianchi identity.
By replacing j with k in the last summand, we see that the last two summands are equal. The above
expression therefore reduces to (using ejekejeβ = ekeβ)

1

4

∑
j,k,β

〈KTM (ej , ek)ej , eβ〉ekeβ = −1

4

∑
k,β

Ric(ek, eβ)ekeβ =
1

4
scalg.

Combined with Theorem 33 these calculations show:
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Theorem 55. Let (M, g) be an oriented Riemannian manifold with w2(M) = 0. Let W be a Cl(n)-module
with compatible inner product and let E → M be the corresponding Dirac bundle with Dirac operator D.
Then we have

D2 = ∆ +
1

4
scalg,

where scalg operates on sections by scalar multiplication.

Remark 56. The Dirac bundle Cl(TM) ∼= Λ∗(TM) ∼= Λ∗(T ∗M) from Section 2.5. does not follow this
construction scheme (that started in Section 3.1). In particular, the curvature term appearing there is
different: On one forms it is given by the Ricci endomorphism and not by multiplication with the scalar
curvature function.

The following will be shown on exercise sheet 5:

Proposition 57. In even dimensions n = 2k there exists a unique Cl(n)-representation ∆ of complex
dimension 2k.

We therefore obtain a canonical Dirac operator D on the vector bundle S = PSpin(M) ×Spin ∆. This is
the Dirac operator on an even-dimensional spin manifold.

Remark 58. The construction of the associated bundle E from the last sections may be carried out as soon
as one has a Spin(n)-representation W .

3.5.1 Spinor Dirac Operator

As a Spin(n)-module the representation ∆ splits into two irreducible parts ∆ = ∆+⊕∆−. The representations
∆± are inequivalent irreducible representation of Spin(n). There are no other irreducible representations of
Spin(n) so that −1 ∈ Spin(n) acts as multiplication with −1, see exercise sheet 6 2

Hence S = S+ ⊕ S− with induced connections ∇S± . The Clifford multiplication with an element v ∈ Rn
takes S+ to S− (and S− to S+). We may therefore view the Dirac operators as

D : C∞(S±)→ C∞(S∓),

the so-called Z/2-graded Dirac operator or the Spinor Dirac Operator. This splitting only exists on even-
dimensional manifolds. For odd-dimensional manifolds, the Dirac operator does not split.

4 Linear Analysis on Manifolds

4.1 Linear Differential Operators
Recall the notation |α| = α1 + · · ·+ αn for a multi-index α ∈ Nn.

Definition 59. Let E,F → M be vector bundles on a smooth manifold Mn of respective ranks rkE =
p, rkF = q. A differential operator from C∞(E) to C∞(F ) of order ≤ k is a linear map

P : C∞(E)→ C∞(F ).

In local coordinates (x1, . . . , xn) on U ⊂ M and in local trivializations E|U = U × Rp, F |U = U × Rq we
require that P may be expressed in the form

(Pϕ)(x) =
∑

Aα(x)
∂|α|ϕ

∂α1
1 · · · ∂

αn
n
, x ∈ U,

where Aα : U → Rq×p are smooth functions (this condition is independent of the choice of trivializations and
coordinates).

2This is not correct: Exercise Sheet 6 indeed yields a Spin(n)-representation which extends to an algebra representation of
Cl(n)0. But this “linearizable” representation does in general not coincide with the given Spin(n)-representation. An example
for n = 2 is given by the irreducible complex Spin(2) = S1-representation of weight 3 (“Spin = 3/2”). Then the resulting
S1-representation is of weight −1.
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Letting Dk(E,F ) denote the set of differential operators from C∞(E) to C∞(F ) of order ≤ k, we have
inclusions

Dk(E,F ) ⊃ Dk−1(E,F ) ⊃ · · · ⊃ D0(E,F ) = C∞(Hom(E,F ))

For P ∈ Dk, Q ∈ Dl we have Q ◦ P ∈ Dk+l for the composite.

Example 60. On a Riemannian manifold (M, g) let E = M×R, so C∞(E) = C∞(M,R) are the real-valued
functions on M . Let F = TM be the tangent bundle. From coordinates (xi) on M we get a local frame
(∂i = ∂/∂xi)i of F . Recall that the gradient of a function f ∈ C∞(M) is the unique vector field gradg(f)
satisfying

df = g(gradg(f),−).

We thus get a linear map gradg : C∞(M)→ C∞(TM). Locally,

gradg(f) = gij
∂f

∂xi
∂j

so that gradg ∈ D1(E,F ). We have (where ‘1’ appears in the i-th position)

A(0,··· ,0,1,0,··· ,0)(x) =

g
i1(x)
...

gin(x)

 ,

all other Aα vanish.

Example 61. The exterior derivative d : C∞(ΛkT ∗M) → C∞(Λk+1T ∗M) is a differential operator of first
order.

Example 62. For a Dirac bundle S the corresponding Dirac operator D ∈ D1(S, S) is also differential
operator of first order.

Example 63. For a vector bundle E →M with connection ∇E over a Riemannian manifold we have seen
the connection Laplacian ∆ ∈ D2(E,E), which is of second order.

Example 64. Let (M, g) be a Riemannian manifold, E = TM , F = M×R. The divergence of X ∈ C∞(TM)
is the function divX = −d∗α = ∗d(∗α), where α = X[ is the differential form which is dual (in the sense of
the metric g) to the vector field X (note that [Roe] uses the opposite convention divX = +d∗).

Write α = Aidx
i. Then ∗α =

∑
i,j(−1)j+1Ai

√
ggijdx1 ∧ . . .∧dxj−1 ∧dxj+1 ∧ . . . dxn, where g = det(gij)

and so
d(∗α) = ∂j

(
Aig

ij√g
)
dx1 ∧ . . . ∧ dxn

or

∗d ∗ α =
1
√
g
∂j
(
Aig

ij√g
)

= gij∂jAi +Ai∂jg
ij +Aig

ij∂j(log
√
g)

We have
∂jg

ij = −Γjjag
ai − Γijag

aj

while
∂jg = gabg∂j(gab)

using that d
dt det(A(t)) = tr

(
Adj(A(t))dAdt

)
for every smooth function t 7→ A(t) ∈ Rn×n (Jacobi’s formula).

Therefore

∂j log
√
g = − 1

√
g

1

2 · √g
∂jg = Γaja
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Hence we have the following local expression for the divergence

−d∗α = gij∂jAi −AigjkΓijk.

The differential operator is therefore described by the matrices

A(0,...,0) = (−gjkΓ1
jk, . . . ,−gjkΓnjk)

and (where ‘1’ stands in the j-th place)

A(0,...,1,...,0) = (g1j , . . . , gnj)

Example 65. In local coordinates where X = Xk∂k, we may also write

div(X) =
1
√
g
∂k
(√
gXk

)
. (15)

For the proof, note that ∗〈X,−〉 = ιXdvol (obvious for X = e1 in an orthonormal frame). This means

∗X[ =
∑
k

(−1)k−1Xk√g dx1···k̂···n

and so
d ∗X[ = ∂k(

√
gXk)dx1···n

This n-form is clearly Hodge dual to (15). This local expression for the divergence is similar to that on Rn.
Expanding ∂k(

√
g) similarly as above leads to

div(X) = ∂kX
k + ΓakaX

k.

Definition 66. Let (M, g) be a Riemannian manifold with volume element dvolg =
√
gdx1 · · · dxn (note that

an orientation of M is not required here, so dvol is regarded as a measure on M .) Suppose that the vector
bundle E is equipped with an inner product (−,−)E. We define the L2-inner product

〈ϕ,ψ〉E =

∫
M

(ϕ(x), ψ(x))E dvolg

for ϕ,ψ ∈ C∞(E), where at least one of these is required to have compact support.

This defines an inner product (a positive definite symmetric bilinear form / Hermitian form) on the space
of sections C∞(E).

Proposition 67. Suppose E,F →M are vector bundles with an inner product over a Riemannian manifold
M . For all P ∈ Dk(E,F ) there exists a unique P ∗ ∈ Dk(F,E) with the property

〈Pu, v〉F = 〈u, P ∗v〉E (16)

for all u ∈ C∞(E) and v ∈ C∞(F ), one of which is required to have compact support.

Definition 68. The unique differential operator P ∗ described in Proposition 67 is called the formal adjoint
of the differential operator P .

Proof. Since the inner product is positive definite, it is clear that there exists at most one such operator
P ∗. We wish to prove that it is a differential operator of order ≤ k. For this calculate in local coordinates.
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Suppose therefore that the supports of u, v are both contained in a coordinate neighborhood U ofM . Choose
orthonormal frames of E|U , F |U . Then∫

U

(Pu, v)F dvol =
∑
|α|≤k

∫
U

(
Aα

∂|α|u

∂α1
1 · · · ∂

αn
n
, v

)
F

√
gdx

=
∑
|α|≤k

∫
U

(
∂|α|u

∂α1
1 · · · ∂

αn
n
,
√
g(Aα)∗v

)
E

dx

=
∑
|α|≤k

∫
U

(−1)|α|
(
u,

∂|α|

∂α1
1 · · · ∂

αn
n

(
√
g(Aα)∗v)

1
√
g

)
dvol

where we have used integration by parts. It follows that

P ∗v =
1
√
g

∑
|α|≤k

(−1)|α|
∂|α|(

√
g(Aα)∗v)

∂α1
1 · · · ∂

αn
n

This shows that P ∗ is a differential operator of order ≤ k. To prove (16) for u, v arbitrary, where we assume
without loss of generality that the support of u is compact, we proceed as follows. Write u = u1 + · · · + ul
where uj has support in some coordinate neighborhood Uj . Then we write v = v1 + · · · + vl + v̄ where the
support of vj is within Uj and where the support of v̄ is disjoint from all the Uj . Then (16) follows from
linearity and locality of P, P ∗.

Example 69. If P = A ∈ C∞(Hom(E,F )), the formal adjoint is the ordinary adjoint of the family of linear
maps Ex → Fx.

Example 70. Let (Mn, g) be an oriented Riemannian manifold. Consider d : Ωk−1
c (M) → Ωkc (M). The

formal adjoint of d is the operator d∗ defined above in equation (12). This follows from Stokes’ Theorem for
α ∈ Ωk, β ∈ Ωk−1

0 =

∫
M

d(β ∧ ∗α) =

∫
M

dβ ∧ ∗α+ (−1)k−1

∫
M

β ∧ d(∗α)

= 〈dβ, α〉+ (−1)k−1+(n−k+1)n+n−k+1

∫
M

β ∧ ∗ ∗ d(∗α)

= 〈dβ, α〉 − 〈β, d∗α〉

using the definition of the Hodge star dβ∧∗α = (dβ, α)dvolg, where dvolg ∈ Ωn(M) is the (oriented) volume
form on M .

Example 71. Let (M, g) be a closed Riemannian manifold and let S → M be a bundle with connection
and compatible inner product. The covariant derivative is a map ∇ : C∞(S) → C∞(T ∗M ⊗ S). We shall
compute the formal adjoint ∇∗. Choose a frame (e1, . . . , en) of TM on U with corresponding dual frame εi,
so that εi(ej) = δij. Let εi ⊗ si ∈ C∞(T ∗M ⊗ S) and s ∈ C∞(S). Define ω = εi(si, s)S ∈ Ω1

c(U) using the
inner product on S. Then by Stokes’ Theorem and Lemma 34 we have

0 =

∫
M

d∗ω

d∗ω = gjkejy∇ekω
∇ekω = −Γikqε

q(si, s) + εi∇ek(si, s)

so

0 =

∫
M

(
gjkΓikj(si, s)− gjk∇ek(sj , s)

)
dvol =

∫
M

(
gjkΓikj(si, s)− gjk(∇ksj , s)− gjk(sj ,∇ks)

)
dvol.
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Since ∇(s) = εk∇k(s) we also have (
εj ⊗ sj ,∇(s)

)
= gjk(sj ,∇ks)

Integrating over M then gives

〈εj ⊗ sj ,∇(s)〉 =

∫
M

(
gjkΓikjsi − gjk∇ksj , s

)
dvol.

Thus ∇∗(εi ⊗ si) = gjkΓikjsi − gjk∇ksj. A similar computation can be used to give an alternative approach
to Example 64.

In case (e1, . . . , en) is an orthonormal frame, synchronous at p, this simplifies to

∇∗(εi ⊗ si)
∣∣
p

= −
n∑
i=1

∇i(si)

From this calculation, we obtain for the connection Laplacian defined in (11):

Proposition 72. ∆ = ∇∗ ◦ ∇.

Proof. For (e1, . . . , en) an orthonormal frame, synchronous at p we have ∆(s)|p = −
∑
∇2
i (s), while

∇∗∇(s)|p = ∇∗(εi∇is) = −
∑
∇2
i (s).

It follows that ∆ is a non-negative operator:

〈∆(s), s〉 = 〈∇(s),∇(s)〉 ≥ 0.

Using D2 = ∆ +K from Theorem 33 we conclude:

Theorem 73 (Bochner). Let S →M be a Dirac bundle with 〈Ks, s〉 > 0 for all s 6= 0. Then ker(D) = 0.

Proof. Ds = 0 ⇒ D2s = 0 ⇒ 0 = 〈D2s, s〉 = 〈∆s, s〉 + 〈Ks, s〉 is the sum of two non-negative numbers.
Hence both are zero, so Ks = 0, which by assumption implies s = 0.

Example 74. Let (M, g) be a spin manifold, let W be a Cl(n)-representation, and let S → M be the
corresponding Dirac bundle. If scalg > 0 at every point, then ker(D) = 0. This follows since in this case, K
is multiplication with 1

4 scalg (see Theorem 55).

Example 75. Let S →M be a Dirac bundle. Then D∗ = D (so the Dirac operator is formally self-adjoint).
To prove this, we choose an orthonormal frame (e1, . . . , en) synchronous at p. At p we have

(Ds1, s2)|p − (s1, Ds2)|p =
∑
i

((ei∇is1, s2)S − (s1, ei∇is2))S

=
∑
i

(∇i(eis1), s2)S + (eis1,∇is2)S

=
∑
i

∇i (eis1, s2)S = d∗ω,

where ω = −(eis1, s2)εi (use Lemma 34). From Stokes’ Theorem it follows that 〈Ds1, s2〉 = 〈s1, Ds2〉.
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4.2 Sobolev Spaces
Definition 76. Two norms ‖ · ‖1, ‖ · ‖2 on a (possible infinite dimensional) vector space V are equivalent if
we find constants C1, C2 > 0 so that

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1
for all x ∈ V .

In the following we repeatedly use the following principle: Let ‖−‖1 and ‖−‖2 be two equivalent norms
on V . Let (V, ‖ − ‖1) and (V, ‖ − ‖2) be the completions of V with respect to these norms (consisting of
equivalence classes of Cauchy sequences). Then the identity induces linear bounded maps

(V, ‖ − ‖1)� (V, ‖ − ‖2)

and hence these two completions are canonically isomorphic as topological vector spaces.
Let E → (M, g) be a vector bundle with Hermitian metric over a Riemannian manifold (M, g). Recall

that for u, v ∈ C∞c (E) we have defined the L2-inner product as

〈u, v〉L2 =

∫
M

(u, v)E dvol.

This defines a Hermitian form on the space C∞c (E).

Definition 77. L2(E) is the Hilbert space completion of the inner product space (C∞c (E), 〈−,−〉L2). We call
it the Hilbert space of L2-sections of E (even though, strictly speaking, the elements are not genuine sections,
but may be modified on sets of measure zero). We write ‖u‖2L2 = 〈u, u〉L2 , which controls the average of u.

We wish to define norms which control not only the average of the values of u, but also all averages of the
derivatives of order up to k. We begin with the important special case of the torusM = Tn = R/(2πZn) with
the standard flat metric (induced from Rn) and the trivial bundle E = M × C. Then C∞(E) = C∞(M,C)
are 2π-periodic complex-valued functions.

Fourier Expansions. The functions uν(x) = (2π)−n/2ei〈ν,x〉 for ν ∈ Zn form an orthonormal basis of
L2(Tn,C) (they are obviously orthonormal. Using the Stone-Weierstraß Theorem, they can be seen to span
the Hilbert space). It follows that any ϕ ∈ C∞(Tn) may be expressed as an L2-convergent series

ϕ =
∑
ν∈Zn

ϕ̂(ν)uν , where ϕ̂(ν) = 〈ϕ, uν〉 =

∫
Tn
ϕ(x)uν(x)dx.

We call {ϕ̂(ν)}ν∈Zn the Fourier coefficients of ϕ. Then we have Parseval’s identity

‖ϕ‖2L2 =
∑
ν,µ

ϕ̂(ν)ϕ̂(µ)〈uν , uµ〉 =
∑
ν

|ϕ̂(ν)|2.

Differentiation and multiplication correspond to each other under the Fourier transform:

∂̂ϕ

∂xj
(ν) =

〈
∂ϕ

∂xj
, uν

〉
= −

〈
ϕ,
∂uν
∂xj

〉
= iνjϕ̂(ν), (17)

using integration by parts and ∂uν
∂xj = iνjuν .

This relationship between differentiation and the Fourier coefficients leads us to the following definition:

Definition 78. Let k ∈ N and u, v ∈ C∞(Tn). Define the k-th Sobolev norm (also called Hk or W k,2)

〈u, v〉Wk =
∑
ν∈Zn

û(ν)v̂(ν)(1 + ‖ν‖2)k

Using (17), this series is seen to converge absolutely. The Hilbert space completionW k(Tn) of (C∞(Tn), 〈−,−〉Wk)
is called the Sobolev space of degree k.

34



For example, W 0(Tn) = L2(Tn).

Proposition 79. If 0 < k1 < k2, then the inclusion W k2(Tn)→W k1(Tn) (given by extending the uniformly
continuous map C∞(Tn)→W k1(Tn) to the completion W k2(Tn)) is continuous.

The map F : W k2(Tn) → W k1(Tn) is injective (this is not obvious, because a non-injective map may
well be injective on a dense subspace). It suffices to show that W k → L2 is injective, because then F may
be post-composed with W k1 → L2 to give the injective map W k2 → L2. Suppose therefore that u ∈ W k2

satisfies ‖u‖L2 = 0. Then all Fourier coefficients û(ν) = 0 vanish and so ‖u‖Wk2 = 0 and u = 0.

Example 80. Let ϕ ∈ C∞(Tn). Then by (17) we have

‖ϕ‖2W 1 =
∑
ν∈Zn

|ϕ̂(ν)|2(1 + ‖ν‖2) = ‖ϕ‖2L2 + ‖grad(ϕ)‖2L2 .

Thus ‖ · ‖W 1 controls both ϕ and its derivative in the average. Similarly, ‖ · ‖Wk controls all derivatives up
to order k in the average.

Definition 81. For k ∈ N and ϕ ∈ C∞(Tn) let

‖ϕ‖Ck = max
|α|≤k

sup
x∈Tn

∣∣∣∣ ∂|α|ϕ

∂α1x1 · · · ∂αnxn
(x)

∣∣∣∣ .
This norm controls the mixed derivatives up to order k at every point (not just in the average). Note however,
that this norm is not induced by an inner product.

The completion of the normed space (C∞(Tn), ‖ · ‖Ck) may be identified with the Banach space Ck(Tn).
The follows from the fact that any f ∈ Ck(Tn) may be approximated in the Ck-norm by smooth functions.

Proposition 82. The identity map (C∞(Tn), ‖ · ‖Ck) → (C∞(Tn), ‖ · ‖Wk) is continuous. We thus get a
continuous map Ck(Tn)→W k(Tn) on the completions.

Proof. Using the multinomial theorem we calculate for u ∈ C∞(Tn):

‖u‖2Wk =
∑
ν∈Zn

|û(ν)|2(1 + ‖ν‖2)k =
∑
ν∈Zn

|û(ν)|2
∑
|α|≤k

(
k

|α|

)(
|α|
α

)
‖να‖2

By Parseval’s Theorem and (17) we have

∑
ν∈Zn

|û(ν)να|2 =

∥∥∥∥∂|α|u∂xα

∥∥∥∥2

L2

.

Combining these two equations with
∥∥∥∂|α|u∂xα

∥∥∥2

L2
≤ vol(Tn)‖u‖2Ck completes the proof.

As by-product of the proof we obtain the following generalization of Example 80:

‖u‖2Wk =
∑
|α|≤k

(
k

|α|

)(
|α|
α

)∥∥∥∥∂|α|u∂xα

∥∥∥∥2

L2

(18)

The following (somewhat surprising) theorem may be regarded as a converse of the previous proposition:

Theorem 83 (Sobolev Embedding Theorem). For s > k + n/2 we find constants C = C(n, k, s) such that

‖u‖Ck ≤ C‖u‖W s

for all u ∈ C∞(Tn). Passing to the completions, the identity map therefore induces a continuous embedding

W s(Tn)→ Ck(Tn).
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Proof. Using the Fourier expansion of u ∈ C∞(Tn) and the triangle inequality for ‖ · ‖Ck we find

‖u‖2Ck =

∥∥∥∥∥∑
ν∈Zn

û(ν)uν

∥∥∥∥∥
2

Ck

≤

(∑
ν∈Zn

|û(ν)| · ‖uν‖Ck

)2

(we will show that the right hand side is finite, so that the series
∑
ν∈Zn û(ν)uν converges absolutely in the

Banach space Ck.)
From ∂uν

∂xα = (iν)αuν we find ‖uν‖2Ck = max|α|≤k ‖να‖2‖uν‖2∞ ≤ (2π)−n(1 + ‖ν‖2)k, so that

‖u‖2Ck ≤ (2π)−n

(∑
ν∈Zn

|û(ν)| · (1 + ‖ν‖2)k/2

)2

= (2π)−n

(∑
ν∈Zn

|û(ν)| · (1 + ‖ν‖2)s/2 · (1 + ‖ν‖2)(k−s)/2

)2

Now an application of the Cauchy-Schwarz Inequality in `2 gives

‖u‖2Ck ≤ (2π)−n

(∑
ν∈Zn

|û(ν)|2(1 + ‖ν‖2)s

)(∑
ν∈Zn

(1 + ‖ν‖2)k−s

)
≤ C · ‖u‖2W s

for the constant C = (2π)−n
∫
Rn(1 + |x|2)k−sdx, which converges precisely when k− s < −n/2. This proves

the inequality stated in the theorem, so that the identity map on C∞(Tn) may be extended to a continuous
map F : W s → Ck. This map is injective, using the same argument as above (Ck-convergence implies
L2-convergence on the torus).

Remark 84. The definition of the norm ‖ · ‖W s clearly also makes sense for real s > 0. The theorems in
this section continue to hold for these more general Sobolev spaces.

Theorem 85 (Rellich’s Theorem). For k1 < k2 the inclusion W k2(Tn)→W k1(Tn) is compact.

This means that any ‖ · ‖Wk2 bounded sequence has a convergent subsequence for the norm ‖ · ‖Wk1 .

Proof. Let B = {u ∈ W k2 | ‖u‖Wk2 ≤ 1} denote the unit ball in W k2 . For N ∈ N define ZN = {u ∈ W k2 |
û(ν) = 0 ∀|ν| < N}. For u ∈ ZN we have the estimate

‖u‖2Wk1 =
∑
|ν|≥N

|û(ν)|2(1 + ‖ν‖2)k2(1 + ‖ν‖2)k1−k2 ≤ (1 +N2)k1−k2 · ‖u‖2Wk2 . (19)

Let (un) ∈ B. As W k2/ZN is finite-dimensional we successively find subsequences for which û
n
(N)
k

(ν)

converges for all |ν| < N . Passing to the diagonal gives a subsequence vk = u
n
(k)
k

for which all v̂n(ν)

converge. It remains to show that (vn) is a Cauchy sequence in ‖ · ‖Wk1 .
Let ε > 0. Pick N with (1 +N2)k1−k2 < ε2. Then by (19)

‖vn − vm‖Wk1 ≤
∥∥vn − ∑

|ν|<N

v̂n(ν)uν︸ ︷︷ ︸
∈ZN∩B

∥∥
Wk1

+
∥∥ ∑
|ν|<N

v̂m(ν)uν − vm︸ ︷︷ ︸
∈ZN∩B

∥∥
Wk1

+
∑
|ν|<N

‖(v̂n(ν)− v̂m(ν))uν‖Wk1

≤ ε+ ε+
∑
|ν|<N

|v̂n(ν)− v̂m(ν)|(1 + ‖ν‖2)k ≤ 2ε+ (1 +N2)k
∑
|ν|<N

|v̂n(ν)− v̂m(ν)|

For n,m sufficiently large, the last summand is also < ε.

We now define Sobolev spaces of sections of vector bundles over closed Riemannian manifolds. Let E →M
be a vector bundle with inner product and connection (not necessarily compatible with the inner product),
defined over a closed Riemannian manifold (M, g). Given a section u ∈ C∞(E) the covariant derivative is
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a section ∇u ∈ C∞(T ∗M ⊗ E). On the tensor product T ∗M ⊗ E we use the connection characterized for
α ∈ C∞(T ∗M), s ∈ C∞(E) by

∇T
∗M⊗E

X (α⊗ s) = ∇LC
X (α)⊗ s+ α⊗∇EX(s).

Then ∇∇u ∈ C∞(T ∗M ⊗ T ∗M ⊗ E), and so forth. In the case of E = M × C, M = Tn a section may be
viewed as a function u : Tn → C and we have

∇(u) = du = ∂iudx
i

∇∇(u) = ∂j∂iudx
i ⊗ dxj

∇ · · ·∇(u) =
∂|α|u

∂xα
dxα1 ⊗ · · · ⊗ dxαk

which is the usual higher total differential.

Definition 86. Let M be closed Riemannian manifold and let E →M be a vector bundle with inner product
and connection ∇. For k ∈ N the k-th Sobolev norm of a section u ∈ C∞(E) is defined as

‖u‖2Wk =

k∑
a=0

∥∥∇au∥∥2

L2 , ∇au = ∇ · · ·∇︸ ︷︷ ︸
a times

u.

The Hilbert space completion of C∞(E) for this norm is the k-th Sobolev space of sections W k(E).

From (18) and the calculations preceding the definition it follows that this new Sobolev norm is equivalent
to the old one (in the case M = Tn and the trivial line bundle E). Definition 86 is more intuitive than
Definition 78, however, the Sobolev and Rellich theorems rely on Fourier decompositions, which is most
conveniently carried out on the torus.

Definition 87. For k ∈ N we define similarly as in Definition 81 above

‖u‖Ck = max
0≤a≤k

‖∇au‖∞

(note that this norm is not induced by an inner product.) The completion of the space C∞(E) with respect
to this norm is the Banach space Ck(E).

Proposition 88. Over a closed manifold M , the equivalence class of the so-defined norm ‖ · ‖Wk is inde-
pendent of the choice of metrics on M , E and the choice of connection ∇ on E. In particular, on Tn it is
equivalent to the norm defined by (18).

For the proof one selects a finite cover of M by coordinate balls Ui ≈ B1(0). The bundle E can be
isometrically trivialized over each Ui (because it is contractible) and we may restrict attention to sections
that are compactly supported in Ui. This is because, using a partition of unity, any section may be written
as a finite sum of sections with support in Ui. Then the metric g and connection ∇ are determined on Ui
by the components gij of the Riemannian metric tensor and the Christoffel symbols Γrpq. All these (real or
complex valued) functions and their derivatives are bounded on the relatively compact set Ui ⊂M and the
bounds can be estimated against each other (from above and from below) for any two choices of g and ∇ on
M .

For example, for functions on Rn with compact support within the relatively compact unit ball B1(0) ⊂
Rn, one can directly check that (for a non-standard metric g and connection ∇) that the Sobolev norm

‖u‖2W 1 = ‖u‖2L2 + ‖∇u‖2L2

is equivalent to ‖u‖2L2 +
∑n
i=1 ‖∂xiu‖

2
L2 where we use the standard derivative of functions on Rn and the

standard volume element on Rn. More details can be worked out in Exercise 1 on sheet 8.
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Similarly, one shows that the norm ‖ · ‖Wk on C∞(M) is equivalent to the following one, defined in terms
of local trivializations: the sets Ui are diffeomorphic to open subsets of Tn. Let χ2

i be a partition of unity
for this cover. Then ‖ · ‖Wk is equivalent to

‖u‖2 =
∑
i

‖ui‖2Wk(Tn) (20)

where ui = χi · u are regarded as Crk(E)-valued functions on Tn (using isometric trivializations of E and
charts).

Similar arguments show that the Ck-norm (87) is does not depend - up to equivalence - on the chosen
metrics on M and E and the choice of connection on E.

Theorem 89. Let E →M be a bundle with inner product and connection on a closed Riemannian manifold
M . Then the identity map C∞(E)→ C∞(E) induces

1. bounded inclusions Ck(E)→W k(E),

2. [Sobolev Embedding Theorem] bounded inclusions W s(E) ↪→ Ck(E) for all s > k + n/2,

3. [Rellich] compact inclusions W k2(E) ↪→W k1(E) for all k2 > k1.

Proof. Choose Ui ≈ B1(0) ⊂ (−π, π)n ⊂ Tn as above. Writing u =
∑
χiu, we see that is suffices to work in

the space C∞supp⊂Ui(E) of smooth functions with support in Ui, where the different norms are equivalent to
our previously considered norms on Tn, compare Equation (20).

Proposition 90. Let E,F →M be vector bundles with metrics and connections over a closed Riemannian
manifold (M, g). Let P : C∞(E) → C∞(F ) be a differential operator of order ≤ k. Then P extends to
bounded linear maps W k+l(E)→W l(F ) and Ck+l(E)→ Cl(F ).

Proof. Being local, the operator P takes C∞c (Ui, E) to C∞c (Ui, F ). Let u ∈ C∞(M) and u = χi ·u as above.
In trivializations over the chart neighborhood Ui we may write

Pui =
∑
|α|≤k

Aα(x)
∂|α|ui

∂α1
1 · · · ∂

αn
n
.

The operator norms of the matrices Aα(x) (and their derivatives) are bounded on Ui. Using the Leibniz rule
for higher derivatives, we get

‖Pui‖2W l ≤ C
∑
|β|≤l

∥∥ ∂|β|
∂xβ

( ∑
|α|≤k

Aα
∂|α|ui
∂xα

)∥∥2

L2

≤ C
∑

|γ|+|δ|≤l

∑
|α|≤k

∥∥∂|γ|Aα
∂xγ

∥∥2

∞ ·
∥∥∂|α|+|δ|ui

∂xα+δ

∥∥2

L2 ≤ C‖ui‖2W l+k ≤ C‖u‖2W l+k

for a generic constant C. Summing up over i, the result follows from (20). The argument for the Ck-norms
is similar.

4.3 Analysis of Dirac Operators
Let (M, g) be a closed Riemannian manifold and let S → M be a Dirac bundle with corresponding Dirac
operator D : C∞(S)→ C∞(S). Obviously D ∈ D1(S, S) is of first order. By Proposition 90 we have

‖Ds‖L2 ≤ C‖s‖W 1

for some C > 0. The Gårding inequality is a non-trivial converse of this inequality:
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Theorem 91 (Gårding inequality). There is C > 0 so that ‖s‖W 1 ≤ C(‖s‖L2 +‖Ds‖L2) for all s ∈ C∞(S).

Proof. Recall that D2(s) = ∇∗∇(s) +K(s) by the Weitzenböck formula (Theorem 33). Therefore

〈Ds,Ds〉L2 = 〈D2s, s〉 = 〈∇∗∇s, s〉+ 〈Ks, s〉 = 〈∇s,∇s〉+ 〈Ks, s〉

and so ‖Ds‖2L2 = ‖∇s‖2L2 + 〈Ks, s〉. On a coordinate patch U ⊂M we have

‖∇s‖2L2 =

∫
U

gij(∂is, ∂js) + 2gijRe(∂is,Γjs) + gij(Γis,Γjs)

≥ C1‖s‖2W 1 − C2‖s‖W 0‖s‖W 1

using that ∇i = ∂i + Γi. Hence, summing over finitely many coordinate patches covering M ,

‖Ds‖2W 0 ≥ C3‖s‖2W 1 − C4‖s‖W 0 · ‖s‖W 1 .

For every ε there is K so that ab ≤ εa2 +Kb2 (for all a, b > 0). This is clear because for x = a/b the function
x− εx2 is bounded above by some constant K. Using ε = 1

2
C3

C4
we find

C4‖s‖W 1 · ‖s‖W 0 ≤ 1

2
C3‖s‖2W 1 +K‖s‖2W 0

so that
‖Ds‖2W 0 ≥

C3

2
‖s‖2W 1 −K‖s‖2W 0

from which the Gårding inequality easily follows (note that ‖ · ‖W 0 = ‖ · ‖L2 by definition).

Theorem 92 (Elliptic Estimates). Let S be a Dirac bundle over a closed Riemannian manifold M . For
k ∈ N there are constants Ck > 0 with

‖s‖Wk+1 ≤ Ck(‖s‖Wk + ‖Ds‖Wk), s ∈ C∞(S).

for all s ∈W k+1(S).

Proof. We proceed by induction, the case k = 0 being the Gårding inequality. For the induction step we can
assume that s ∈ C∞(S) by an approximation argument. In local coordinates

‖s‖Wk+1 ≤ A1

n∑
i=1

‖∂is‖Wk ≤ A1

∑
Ck−1

n∑
i=1

(‖∂is‖Wk−1︸ ︷︷ ︸
≤A2‖s‖Wk

+ ‖D∂is‖Wk−1)

by induction. Moreover, for the second term we have

‖D∂is‖Wk−1 ≤ ‖∂iDs‖Wk−1 + ‖[D, ∂i]s‖Wk−1 ≤ A3‖Ds‖Wk +A4‖s‖Wk

where we use Proposition 90 applied toD and the differential operator [D, ∂i] ∈ D1 of first order (for example,
[f∂1, ∂2] = (∂2f)∂1 and similarly in the case of the Dirac operator).

Interlude: Unbounded Operators

Let H be a separable Hilbert space (such as `2(N) or W k(E)). The Dirac operator is a linear map

D : C∞(S)→ C∞(S)

on the dense subspace C∞(S) of the Hilbert space L2(S). We have an estimate ‖Ds‖L2 ≤ C‖s‖W 1 , but
‖Ds‖L2 cannot be controlled by ‖s‖L2 .

39



Definition 93. An unbounded operator on a Hilbert space H is a linear map A : Dom(A)→ H defined on
a dense vector subspace Dom(A) ⊂ H.

Recall that by the Closed Graph Theorem a linear map A : H → H is bounded precisely when its graph
Γ(A) is a closed subset of H×H.

Definition 94. A unbounded operator A : H ⊃ Dom(A)→ H is said to be closable if Γ(A) ⊂ H×H is the
graph of a (uniquely determined and linear) map Ā : H ⊃ Dom(Ā)→ H. Equivalently, (0, y) ∈ Γ(A) implies
y = 0.

Proposition 95. Let E → M be a Hermitian vector bundle over a closed Riemannian manifold. A dif-
ferential operator P ∈ Dk(E) defines an unbounded operator L2(E) ⊃ Dom(P ) = C∞(E) → L2(E). The
operator P is closable.

Proof. Suppose xi → 0 and Pxi → y in L2, where xi ∈ C∞(E). We must show y = 0. Consider the inner
product with an arbitrary x ∈ C∞(E):

〈x, y〉L2 = lim〈x, Pxi〉L2 = lim〈P ∗x, xi〉L2 = 〈P ∗x, limxi〉L2 = 0

Since C∞(E) is a dense subspace of L2(E), it follows that y = 0, as required.

Proposition 96. Let S →M be a Dirac bundle. Then Dom(D̄) = W 1(S).

Proof. s ∈ Dom(D̄) is equivalent to the existence of a L2-convergent sequence si → s, si ∈ C∞(S), with Dsi
convergent in L2. Then the sequence si is W 1-Cauchy, by the Gårding inequality:

‖si − sj‖W 1 ≤ C(‖si − sj‖L2 + ‖Dsi −Dsj‖L2).

It follows that the limit s of the W 1-convergent sequence si also belongs to W 1. This proves Dom(D̄) ⊂
W 1(S). Conversely, if s ∈ W 1(S) then we have a W 1-convergent sequence si → s. Then also si → s in L2

and Dsi → Ds in L2 by Proposition 90.

Note that by Proposition 90 the closure D̄ : W 1(S)→ L2(S) is bounded.

Definition 97. Let P ∈ Dk(E) be a differential operator. Let x, y ∈ L2(E). We say that Px = y weakly if

〈x, P ∗ϕ〉 = 〈y, ϕ〉 ∀ϕ ∈ C∞(E).

If x, y are smooth and Px = y, then by definition of the adjoint differential operator, Px = y weakly.

Question: If Px = 0 weakly, does it follow that Px = 0 (meaning that x ∈ C∞(E) and that x lies in the
kernel of P )?

The point of weak solutions is that we may use abstract Hilbert space theory to construct them. The
affirmative answer to our question later for P = D will then give us actual solutions of the PDE Dx = 0.

Smoothing Operators

Definition 98. Let E,F → M be vector bundles with inner product over a closed Riemannian manifold.
An operator A : C∞(E)→ C∞(F ) given by the formula

(Au)(y) =

∫
M

K(y, x)u(x)dvol(x)

where K ∈ C∞(F � E∗) (the smoothing kernel) is called a smoothing operator.

Here E � F = pr∗1 E ⊗ pr∗2 F denotes the exterior tensor product of vector bundles E → X and F → Y .
This is a bundle over X × Y with fiber over the point (x, y) given by Ex ⊗ Fy.
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Proposition 99. 1. The operator A admits a unique extension A : L2(E)→ L2(E).

2. We have A(L2(E)) ⊂ C∞(F ).

3. For all k ≥ 0 the operator A : L2(E) → C∞(F ) ⊂ W k(F ) is continuous (for the norms ‖ · ‖L2 and
‖ · ‖Wk).

(the last point motivates calling A a differential operator of order −∞)

Proof. For u ∈ C∞(E) we have, using the Cauchy-Schwarz inequality

‖Au‖2L2 =

∫
M

‖Au(y)‖2dvol(y) =

∫
M

∥∥∥∥∫
M

K(y, x)u(x)dvol(x)

∥∥∥∥2

dvol(y)

=

∫
M

(∫
M

‖K(y, x‖2dvol(x) ·
∫
M

‖u(x)‖2dvol(x)

)
dvol(y)

=

(∫
M

∫
M

‖K(y, x‖2dvol(x)dvol(y)

)
·
∫
M

‖u(x)‖2dvol(x)

= ‖K‖2L2 · ‖u‖2L2

This shows that ‖A‖ ≤ ‖K‖L2 for the operator norm (in fact, they are equal), which proves 1. Item 2. is
immediate by differentiating under the integral sign. For 3., consider P ∈ Dk(F ). Then P ◦ A is again a
smoothing operator with kernel P (K(−, x)). Applying 1. to P ◦A for P = ∇i, 0 ≤ i ≤ k we get

‖∇i ◦A(u)‖L2 ≤ Ci‖u‖L2 .

This gives an inequality ‖Au‖Wk ≤ Dk‖u‖L2 .

In order to approximate L2-sections by smooth sections we will need families of smoothing operators:

Definition 100. A family Fε : L2(E) → L2(E) for ε ∈ (0, 1] of smoothing operators is called a Friedrichs
mollifier if

• Every Fε is self-adjoint, meaning 〈Fεx, y〉 = 〈x, Fεy〉 for all x, y ∈ L2(E).

• The family Fε is uniformly bounded, meaning that we find C > 0 with ‖Fε‖ ≤ C (∀ε ∈ (0, 1]).

• If B ∈ D1(E) then [B,Fε] : C
∞(E) → C∞(E) induces a family of bounded operators L2(E) → L2(E)

with uniform bound C, meaning ‖[B,Fε]‖ ≤ C (∀ε ∈ (0, 1]).

• We have Fε → idL2(E) in the weak operator topology, meaning that 〈Fεx, y〉 → 〈x, y〉 for all x, y ∈ L2.

On exercise sheet 8 we shall see that Friedrichs mollifiers do indeed exist.

Definition 101. Let A : H ⊃ Dom(A) → H be an unbounded operator. The adjoint A∗ is the unbounded
operator A∗ : H ⊃ Dom(A∗)→ H where

Dom(A∗) = {y ∈ H | Dom(A)→ H, x 7→ 〈Ax, y〉 bounded}

For y ∈ Dom(A∗) the functional 〈A−, y〉 may be extended to H, so the Riesz Representation Theorem asserts
the existence of a unique z ∈ H with 〈A−, y〉 = 〈−, z〉. We define A∗y = z. Thus

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ Dom(A), y ∈ Dom(A∗).

Note that Dom(A∗) needn’t be a dense subspace of H, so strictly speaking A∗ isn’t necessarily an
unbounded operator.

Definition 102. An unbounded operator A : H ⊃ Dom(A)→ H is called symmetric if

〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ Dom(A).
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In this case, Dom(A) ⊂ Dom(A∗).

Definition 103. An unbounded operator A : H ⊃ Dom(A)→ H is essentially self-adjoint in case

1. A is closable,

2. Ā is self-adjoint, meaning Dom(Ā∗) = Dom(Ā) and Ā = Ā∗.

Example 104. For a Dirac bundle S → M over a closed Riemannian manifold the Dirac operator D is
essentially self-adjoint. By definition, y ∈ Dom(D̄∗) means that we find z ∈ L2(S) with 〈D̄x, y〉 = 〈x, z〉 for
all x ∈W 1(S). This is equivalent to

〈Ds, y〉 = 〈s, z〉 ∀s ∈ C∞(S),

i.e. that Dy = z weakly. Our assertion now follows from Proposition 107 below.

Before undertaking the proof, we review the notion of weak convergence.

Definition 105. Let (un) be a sequence in a Hilbert space H. We say that un ⇀ u weakly if

〈un, s〉 → 〈u, s〉 ∀s ∈ H

Remark 106. 1. Since 〈, 〉 is positive definite, such a weak limit s is unique.

2. If un → u, then un ⇀ u. The converse is false (for example, take H = `2(N) and the standard basis
un = en).

3. If A : H1 → H2 is a bounded operator and un ⇀ u, then Aun ⇀ Au.

4. Every bounded sequence (un) in H possesses a weakly convergent subsequence (Theorem of Banach-
Alaoglu).

Proposition 107. Let y, z ∈ L2(S) and Dy = z weakly. Then y ∈W 1(S) = Dom(D̄) and D̄y = z.

Proof. Let (Fε) be a Friedrichs mollifier for S → M . Define yε = Fε(y). According to Definition 100, we
have yε ⇀ y weakly. For s ∈ C∞(S) we have

|〈Dyε, s〉| = |〈DFεy, s〉| = |〈y, FεDs〉| ≤ |〈y,DFεs〉|︸ ︷︷ ︸
=〈z,Fεs〉≤C1‖s‖

+ |〈y, [D,Fε]s〉|︸ ︷︷ ︸
≤C2‖s‖

The first equality in the underbrace uses the fact that Dy = z weakly and the inequality in the second
underbrace uses the fact that [D,Fε] is globally bounded by the properties of Friedrichs mollifiers. It follows
that ‖Dyε‖ is bounded in the L2-norm. Combining this with Gårding’s inequality, we see that ‖yε‖W 1 is
bounded, so we obtain a weakly convergent subsequence yε ⇀ y′ for some y′ ∈ W 1(S). Since W 1 → L2 is
bounded, it follows that yε ⇀ y′ in L2. The uniqueness of weak limits implies y′ = y. This proves y ∈W 1.

Let D̄y = z′ ∈ L2(S). By definition, we find an L2-convergent sequence yn → y with yn ∈ C∞(S) and
Dyn → z′. We wish to prove z = z′. For s ∈ C∞(S) we have

〈z′, s〉 ← 〈Dyn, s〉 = 〈yn, Ds〉 → 〈y,Ds〉 = 〈z, s〉

It follows that z = z′.

Theorem 108 (Elliptic Regularity). Let s ∈W 1(S) and Ds = 0. Then s ∈ C∞(S) is smooth (and of course
Ds = 0).
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Proof. As a preparation we show that for all k the operators

Fε, [D,Fε] : W
k(S)→W k(S),

are uniformly bounded in ε, compare Roe’s proof of Proposition 5.24. (The assertion for [D,Fε] is some-
times called Friedrichs Lemma). For estimating [D,Fε] we need to work with special mollifiers defined by
convolution, compare Roe’s Exercise 5.34., respectively our Exercise 2 on Sheet 8.

For k = 0 the above claims follow from Definition 100.
For the inductive step, we first show that the W k+1-norm of Fε is uniformly bounded. Let s ∈W k+1(S).

We use Theorem 92, the induction hypothesis, and Proposition 90 to see

‖Fεs‖Wk+1 ≤ C (‖Fεs‖Wk + ‖DFεs‖Wk)

≤ C (‖Fεs‖Wk + ‖FεDs‖Wk + ‖[D,Fε]s‖Wk) ≤ D‖s‖Wk+1 .

We show next that the W k+1-norms of [D,Fε] are uniformly bounded. By a partition of unity we can
work in a local chart neighborhood Rn, where S = Rn × Rl is trivial. Let (Fε) be Friedrichs mollifiers,
defined by convolution with φε(x) = ε−nφ(x/ε), where

φ(x) =

{
exp(−1/(1− ‖x‖2)) ‖x‖ < 1,

0 ‖x‖ ≥ 1.

For a section s : Rn → Rl we define

Fεs(x) =

∫
φε(x− y)s(y)dy.

Using integration by parts it is easy to check that Fε commutes with all differential operators ∂i. Compare
Exercise 5.34. (iv) in Roe (for differential operators B with constant coefficients).

By definition of the Sobolev norms, it suffices to prove that ∂i[D,Fε] defines a uniformly bounded family
of operators W k+1 → W k for i = 1, . . . , n. For this we use local coordinates to write D = Dj∂j with
Dj ∈ C∞(Rn,Rl) bounded. Then, using that Fε commutes with all ∂i we have

∂i[D,Fε] = (∂iD
j)Fε∂j +DjFε∂ij − Fε(∂iDj)∂j − FεDj∂ij

[D,Fε]∂i = DjFε∂ij − FεDj∂ij

Hence
∂i[D,Fε] = [D,Fε]∂i + (∂iD

j)Fε∂j − Fε(∂iDj)∂j

All three families W k+1 ∂i−→ W k [D,Fε]−−−−→ W k, W k+1 ∂j−→ W k Fε−→ W k
mult∂iDj−−−−−−→ W k, and W k+1 ∂j−→

W k
mult∂iDj−−−−−−→ W k Fε−→ W k, are uniformly bounded by induction. Here we note that the multiplication

operator with the bounded function ∂iDj defines a bounded map W k →W k.
After this preparation, we may now prove the claim of the theorem: s ∈ W k(S) for all k. We work by

induction. By assumption s ∈W 1. Let’s assume s ∈W k. Since Ds = 0 we have

‖Fεs‖Wk+1 ≤ Ck

‖Fεs‖Wk + ‖DFεs‖Wk︸ ︷︷ ︸
=‖[D,Fε]s‖Wk≤C


Here we use the estimates for Fε and [D,Fε] proven before. Since ‖Fεs‖Wk+1 is bounded, we find a weakly
convergent subsequence Fεis ⇀ s̃ inW k+1. But since Fεs ⇀ s we get s = s̃ ∈W k+1(S). Because s ∈W k(S)
for all k, Sobolev’s Theorem 83 implies s ∈ C∞(S).
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Eigenspace Decomposition of D

Recall that the Dirac operator is a self-adjoint operator D̄ : L2(S) ⊃ Dom(D̄) → L2(S). We denote the
graph G = Γ(D̄) = Γ(D) ⊂ H⊕H. By Propositions 96 and 107 we know that

G = {(x, y) ∈ L2(S)× L2(S) | Dx = y weakly} = {(x, y) ∈W 1(S)× L2(S) | D̄x = y}.

Lemma 109. Let J : H⊕H → H⊕H, (x, y) 7→ (−y, x). Then H⊕H = G⊕JG is an orthogonal direct sum.

Proof. (x, y) ∈ G⊥ means that for all s ∈ C∞(S) we have 0 = 〈(x, y), (s,Ds)〉 = 〈x, s〉+〈y,Ds〉. Equivalently,
x = −Dy weakly which is equivalent to (−y, x) ∈ G or to (x, y) ∈ JG.

Definition 110. Let prG : H⊕H → G denote the orthogonal projection onto the graph. Define Q : L2(S)→
L2(S) by the equation prG(x, 0) = (Qx, D̄Qx). In other words, we set Qx equal to y if y, D̄y ∈ W 1 and
x = y + D̄2y (by the lemma, a unique such y can be found for any x ∈ L2(S)).

We note the following properties:

1. Qx ∈W 1(S) = Dom(D̄).

2. Since projections prG have norm 1, we get ‖Qx‖2L2 + ‖D̄Qx‖2L2 ≤ ‖x‖2L2 . Thus ‖Qx‖L2 ≤ ‖x‖L2 so for
the operator norm of Q we get ‖Q‖ ≤ 1. Moreover, ‖D̄Qx‖L2 ≤ ‖x‖L2 and by Gårdings inequality, Q
is a bounded operator L2(S)→W 1(S):

‖Q(x)‖W 1 ≤ C
(
‖Qx‖L2 + ‖D̄Qx‖L2

)
≤ C‖x‖L2

Combined with Rellich’s Theorem 85 we get a compact operator

Q : L2(S)→W 1(S)→ L2(S)

3. Q is self-adjoint because pr∗G = prG (projection operators are self adjoint):

〈Qx, y〉 = 〈(Qx, D̄Qx)︸ ︷︷ ︸
=prG(x,0)

, (y, 0)〉 = 〈(x, 0), (Qy, D̄Qy)︸ ︷︷ ︸
=prG(y,0)

〉 = 〈x,Qy〉

4. Q is non-negative:
〈Qx, x〉 = 〈(Qx, D̄Qx), (x, 0)〉 = 〈prG(x, 0), (x, 0)〉 ≥ 0

since projections are non-negative.

5. Q is injective: if Qx = 0 then (x, 0) ∈ G⊥ = JG so x = −D̄0 = 0.

By the Spectral Theorem (see exercise sheet 9) for compact self-adjoint operators we get a sequence of
real eigenvalues 1 ≥ α1 > α2 > · · · > 0 tending to zero so that the entire Hilbert space may be decomposed
into the corresponding finite-dimensional eigenspaces Eig(Q,αi) of the operator Q:

H =
⊕
i

Eig(Q,αi), Eig(Q,α) = {x ∈ L2(S) | Qx = αx}.

Lemma 111. For 0 < α < 1 let λ be the positive solution to λ2 = (1− α)/α. Then

Eig(Q,α) ⊂ Eig(D̄, λ)⊕ Eig(D̄,−λ). (21)

Moreover for α = 1 we have Eig(Q, 1) ⊂ ker(D̄) = Eig(D̄, 0).
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Proof. Let x ∈ Eig(Q,α) for 0 < α < 1. Then Qx ∈W 1 and by definition of Q we find y ∈W 1 with

(αx, αD̄x) + (−D̄y, y) = (Qx, D̄Qx) + (−D̄y, y) = (x, 0) ∈ G ⊕ JG.

This means (α− 1)x = D̄y, y = −αD̄x. Let z = − 1
αλy. Then D̄x = λz, D̄z = λx so

x+ z ∈ Eig(D̄, λ), x− z ∈ Eig(D̄,−λ)

If α = 1 then D̄y = 0, y = −D̄x so D̄2x = 0 and D̄x = 0 (because ‖D̄x‖2 = 〈D̄x, D̄x〉 = 〈D̄2x, x〉 = 0).

Since the eigenspaces of Q are mutually orthogonal, we conclude equality in (21). In particular, all
Eig(D̄, λ) are finite dimensional. Summarizing we get

H =
⊕
αi

Eig(Q̄, λ) = ker(D̄)
⊕
λi>0

Eig(D̄, λi)
⊕
λj<0

Eig(D̄, λj)

for a discrete subset {λi, λj} ⊂ R with accumulation points only at ±∞. It follows from our argument and
because H is infinite dimensional that λi →∞ or λj → −∞ or both.

We call σ(D) := {λ ∈ R | λ eigenvalue of D̄} the spectrum of D.
We get the following generalization of the Theorem 108.

Theorem 112 (Elliptic Regularity). Let λ ∈ σ(D) and s ∈ Eig(D,λ). Then s ∈ C∞(S) is smooth. Hence
all eigenspaces of D consist of smooth sections and are in fact eigenspaces of D.

Proof. The proof of Gårding’s inequality Theorem 91 and the elliptic estimates 92 apply as well to the
operator Dλ := D− λ · id: Using the Weitzenböck formula we have D2

λ = ∇∗∇+K where K is a first order
differential operator and this is in fact enough for the proof of Theorem 91 go through.

Hence the proof of Theorem 108 applies as well to Dλ instead of D.

We hence get an orthogonal decomposition

L2(S) =
⊕

λ∈σ(D)

Eig(D,λ)

where each eigenspace is a finite dimensional subspace of C∞(S) and the eigenvalues λ have accumulation
points only at ±∞.

Remark 113. • One can show that the spectrum of D is in general not symmetric around 0.

• One can also show that the spectrum of D is neither bounded from below nor from above.

Functional Calculus

Any s ∈ L2(S) may be decomposed orthogonally as

s =
∑

λ∈σ(D)

sλ, ‖sλ‖L2 ≤ ‖s‖L2 , sλ ∈ Eig(D,λ) (22)

where each sλ is smooth.
As the next example shows, this may be regarded as a generalized Fourier expansion:

Example 114. Let D = −i ddt : C∞(S1,C)→ C∞(S1,C). Then σ(D) = Z and Eig(D,λ) = Ceiλt.

Proposition 115. Let s ∈ L2(S). Then s is smooth if and only if for all k we have |λ|k ‖sλ‖L2

|λ|→∞−−−−→ 0.
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Proof. We use the following estimate on the eigenvalue growth of D, proven further below in Proposition
128 3: For Λ > 0 let N(Λ) be the number of eigenvalues of D (counted with multiplicity) whose norm is
bounded by Λ.Then

N(Λ) ≤ C(1 + Λ)
n(n+4)

2 ,

where n = dimM and C is a constant, which depends only on M and the rank of S.
Now for the proof of the proposition, note that sλ ∈ C∞, by elliptic regularity. Applying Theorem 92 we

have by induction
‖sλ‖Wk ≤ Ck|λ|k‖sλ‖L2 .

Now assume that |λ|` ‖sλ‖L2

|λ|→∞−−−−→ 0 for all `. Pick k > 0. Then, for all large enough n ≥ 0, we have∑
n<|λ|≤n+1

‖sλ‖Wk ≤ Ck ·N(n+ 1) max
n<|λ|≤n+1

|λ|k‖sλ‖L2 ≤ 1

n2

because n2 · Ck ·N(n + 1) maxn<|λ|≤n+1 |λ|k‖sλ‖L2 tends to 0 as n goes to infinity by our assumption and
the above estimate on N(n+ 1). Hence

∑
λ∈σ(D) sλ converges absolutely in W k-norm. We conclude s ∈W k

for all k and hence from Theorem 83, s ∈ C∞.
Conversely, if the series s =

∑
sλ ∈ W k(S) for all k, then

∑
|λ|2k‖sλ‖2 = ‖Dks‖2L2 < ∞ for all k and

hence |λ|k ‖sλ‖L2

|λ|→∞−−−−→ 0 for all k.

Example 116. To deduce the convergence of the series
∑∞
k=0 ϕ(λk) for ϕ rapidly decreasing it is important

to have growth estimates for (λk). Indeed, consider the slowly growing λk = ln(k) and ϕ(λ) = exp(−λ).
Then ϕ is rapidly decreasing but ϕ(λk) = 1/k which gives the non-convergent harmonic series.

Definition 117 (Functional calculus). For a bounded function f : σ(D)→ R we define the operator

f(D) : L2(S)→ L2(S),
∑

sλ 7→
∑

f(λ)sλ

From the functional calculus we take the following facts:

1. ‖f(D)‖ = supλ∈σ(D) |f(λ)|. In fact, σ(f(D)) = f(σ(D)).

2. The map f 7→ f(D) defines a ring homomorphism Abbb(R) → B(L2(S)) on the ring Abbb(R) of
bounded functions R→ R with point-wise addition and multiplication.

3. If f ∈ O(|λ|−k) for all k (we call such f rapidly decreasing), then f(D)(s) ∈ C∞(S) is smooth for any
s ∈ L2(S). In fact, it is a smoothing operator (see Exercise sheet 9).

4. Let f(x) = xg(x) for bounded f, g. Then f(D) = D̄ ◦ g(D) = g(D) ◦ D̄ on W 1(S).

5. f(D) is self-adjoint.

6. For the constant function 1 we have 1(D) = idL2(S).

Example 118. Let fε(λ) = exp(−ελ2), ε ≥ 0. If ε > 0 then Fε = fε(D) : L2(S)→ C∞(S). For s ∈ L2(S)
we have L2-convergence Fεs→ s, as can be seen by writing s =

∑
sλ as an L2-convergent series. Moreover

Fε is self-adjoint and ‖Fε‖ is uniformly bounded by 1. Since λf(λ) = f(λ)λ we have Fε ◦ D̄ = D̄ ◦ Fε and
hence [D̄, Fε] = 0 on W 1(S).

3This consideration is errornously left out in [Roe] - compare Example 116
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4.4 Application: Hodge Theory
Let (M, g) be an n-dimensional closed Riemannian manifold. Recall that the de Rham cohomology of M is

Hn
dR(M) = Hn(Ω∗(M), d)

for the complex of differential forms Ωk(M) = C∞(ΛkT ∗M). Thus any class c ∈ Hk
dR(M) is represented by

a closed k-form ω ∈ Ωk(M) (so dω = 0).

Motivating question: What is the ‘best’ representative ω for the class c?

The elements c = [ω] of Hk
dR(M) = ker(dk)/ im(dk−1) may be viewed as affine subspaces ω + im(dk−1)

of ker(dk). To single out a representative, we demand ω⊥ im(dk−1) using the L2 inner product. This means

0 = 〈dη, ω〉 = 〈η, d∗ω〉 ∀η ∈ Ωk−1(M).

Our requirement is therefore equivalent to

(d∗ω = 0 and dω = 0)⇔ Dω = 0⇔ ∆ω = 0

for the Hodge-Dirac operator D = d + d∗. Recall that such a form ω is called harmonic. The vector space
of harmonic k-forms will be denoted Hk(M).

Lemma 119. Let S →M be a Dirac bundle. Then we have an orthogonal decomposition

C∞(S) = ker(D)⊕ im (D : C∞(S)→ C∞(S)) .

Proof. We know already that we have an orthogonal decomposition

L2(S) = ker(D)⊕
⊕

λ∈σ(D)\{0}

Eig(D,λ)

where ker(D),Eig(D,λ) ⊂ C∞(S). Write ϕ = ϕ0 + ϕ̃ for ϕ0 ∈ ker(D) and ϕ̃ ∈
⊕

λ∈σ(D)\{0} Eig(D,λ). Since
ϕ,ϕ0 are smooth, the section ϕ̃ is also smooth. We wish to find ψ ∈ C∞(S) with Dψ = ϕ̃.

Let ϕ̃ =
∑
ϕλ for ϕλ ∈ Eig(D,λ) with λ ∈ σ(D)\{0}. Since ϕ̃ is smooth, the sequence ‖ϕλ‖L2 is rapidly

decreasing. Define ψ =
∑
λ

1
λϕλ. Note that ‖

1
λϕλ‖L2 ∈ O(|λ|−k) for each k, so it is rapidly decreasing which

shows that ψ is indeed smooth. Clearly also Dψ = ϕ̃.

Corollary 120. We have Ωk(M) = ker(D)⊕ im(D) for the vector space space ker(D) = Hk(M) of harmonic
k-forms, which is finite-dimensional.

As a consequence of elliptic regularity, we may now easily deduce:

Theorem 121 (Hodge Decomposition). We have an L2-orthogonal decomposition

Ωk(M) = Hk ⊕ im(dk−1)⊕ im(dk+1)∗.

Moreover, ker(d) = Hk ⊕ im(dk−1).

Proof. Since D = d+ d∗, the image of D : Ω(M)→ Ω(M) is dΩ(M) + d∗Ω(M). Because of

〈dη, d∗ω〉 = 〈ddη, ω〉 = 0

this decomposition is orthogonal and hence a direct sum. As already noted, the kernel of D are the harmonic
forms. The theorem now follows form Lemma 119. For the last part, note that Hk ⊕ im d ⊂ ker d is trivial.
To see ker(d)⊥ im(d∗), note that dϕ = 0 implies 〈ϕ, d∗ω〉 = 〈dϕ, ω〉 = 0.
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It follows that Hk(M) is a complementary subspace of im dk−1 in ker dk. Hence the canonical map

Hk(M, g) ↪→ ker(dk)� Hk
dR(M)

is an isomorphism. In particular, every cohomology class has a unique harmonic representative.

Corollary 122. dimHk
dR(M) <∞.

Theorem 123 (Bochner). Let (M, g) be a closed oriented Riemannian manifold. Suppose Ricg ≥ 0 and
that there exists a point p ∈M with Ricg(p) 6= 0. Then H1

dR(M) = 0.

This is proven on exercise sheet 7 / 2. By verifying that the Hodge star operator preserves the harmonic
forms, we see:

Corollary 124 (Poincaré duality). Let (M, g) be a closed oriented Riemannian manifold. Then the Hodge
star operator restricts to an isomorphism

∗ : Hk(M)→ Hn−k(M).

Hence dimHk
dR(M) = dimHn−k

dR (M).

5 Asymptotics of the Heat Kernel

5.1 The Heat Equation
Let S → M be a Dirac bundle over a closed Riemannian manifold (M, g). The heat equation is the partial
differential equation

∂s

∂t
+D2s = 0.

Here we regard s as a family of sections st ∈ C∞(S) for t ≥ 0. It is required that st for t > 0 depends
smoothly on t, while the dependence at t = 0 need only be continuous.

Proposition 125 (Existence and Uniqueness). Let s0 ∈ C∞(S). Then there is exists a unique solution (st)
of the heat equation with given initial condition s0.

Proof. Uniqueness. For t > 0 we have

∂

∂t
‖st‖2 =

∂

∂t
〈st, st〉 = −〈D2st, st〉 − 〈st, D2st〉 = −2‖Dst‖2 ≤ 0.

It follows that ‖st‖ ≤ ‖s0‖ for all t ≥ 0.

Existence. Let st = e−tD
2

(s0) = ft(D)(s0) where ft(x) = exp(−tx2). By formally taking the derivative,
this is a solution of the heat equation. More precisely,∥∥∥∥st+h − sth

+D2st

∥∥∥∥
Wk

→ 0 (for h→ 0)

since ‖ ft+h−fth + x2ft‖∞ → 0 and (x2ft)(D) = D2ft(D). Recall here that ‖f(D)‖op = maxλ∈σ(D) |f(λ)|
from the general theory of functional calculus. We now consider the behavior at t = 0. We have ‖ft(D)s0 −
s0‖Wk

t→0−−−→ 0 for all k, so that ft(D)s0 → s0 in C0.

Remark 126. The proof of the theorem works already for s0 ∈ L2(S) and (st) with C1 in t and C2 in
p ∈M . Such a solution of the heat equation (st) is then automatically smooth for t > 0.
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For t > 0 the operator exp(−tD2) is a smoothing operator (exercise sheet 9/2). Hence we may write

(e−tD
2

s)(p) =

∫
M

kt(p, q)s(q)dvol(q). (23)

for a smooth family kt ∈ C∞(S � S∗) of smoothing kernels.

Proposition 127. 1. (kt) is smooth in t and in (p, q). We have

∂

∂t
kt +D2

pkt = 0.

(where we apply the Dirac operator Dp only in p-direction.)

2. We have a C0-convergent sequence of functions of p in C∞(S)∫
M

kt(p, q)s(q)dvol(q)
t→0−−−→ s(p)

Thus kt(p,−)
t→0−−−→ δp.

Proof. This is immediate by definition and Proposition 125. To see 1., we simply differentiate under the
integral sign and since st =

∫
M
kt(−, q)s(q) is a solution with initial condition s0, it converges in C0 towards

s0 for t→ 0.

The proposition in fact characterizes the smoothing kernel. Indeed, suppose that (Kt) is a family of
smoothing kernels with properties 1. and 2. of Proposition 127. By 1. for all t > ε > 0 we have

Kts = e−(t−ε)D2

Kεs

using also the uniqueness in Proposition 125. By property 2. we have Kεs → s in C0 for ε → 0 and
e−(t−ε)D2 → e−tD

2

in the operator norm. It follows that Kts = e−tD
2

s for all t > 0.

5.2 Eigenvalue Growth of D
Recall from (22) that every s ∈ L2(S) may be decomposed s =

∑
λ∈σ(D) sλ into eigenvectors sλ of D. We

now prove the eigenvalue growth estimate used in the proof of Proposition 115. This estimate guarantees
that the eigenvalues of D grow sufficiently fast, so that the series considered in the proof of Proposition 115
indeed converges.

Proposition 128. Let N(Λ) be the number of eigenvalues λ with modulus |λ| ≤ Λ, counted with multiplicity.
We find a constant C > 0, depending only on M and the rank of S, with

N(Λ) ≤ C · (1 + Λ)
n(n+4)

2 .

Proof. Let ε > 0 and let {p1, . . . , pN} be a maximal ε/2-net in M . This means that N is maximal with the
property Bε/2(pi)∩Bε/2(pj) = ∅ for i 6= j. Then

⋃N
i=1Bε(pi) = M (for otherwise, we could introduce a new

point x with Bε/2(x) ∩ Bε/2(pi) = ∅ for i). This argument also proves the existence of such nets (add new
points until the equality

⋃N
i=1Bε(pi) = M holds). Since M is compact, we have:

∃r0 > 0, c0 > 0 ∀0 ≤ r ≤ r0 : vol(Br(p)) ≥ c0rn

Here n = dimM . Hence

vol(M) ≥
N∑
i=1

vol(Bε/2(pi)) ≥ Nc0
(ε

2

)n
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and N = Nε ≤ c1ε
−n where the constant c1 depends only on M . This is an estimate for the number of

points in a maximal ε/2-net.
Let λ1, · · · , λk be the first k eigenvalues, in ascending order |λ1| ≤ |λ2| ≤ · · · ≤ |λk| (repeated according

to their multiplicity). Let ϕi be the corresponding eigenvalues (chosen as an orthonormal basis of the
eigenspace, if we have a multiple eigenvalue). Let V =

∑k
i=1 Eig(D,λi) (the eigenspace for a multiple

eigenvalue contributes to this sum only once). We claim that for all ε ≤ ε0 we have an injective map

χ : V → Sp1 ⊕ · · · ⊕ SpN , ϕ 7→ (ϕ(p1), . . . , ϕ(pN )) .

This will then lead to an estimate dim(V ) ≤ Nrk(S). To prove this, let ϕ =
∑
αiϕi be an element of

the kernel of χ. Suppose x ∈ M and choose pi ∈ M with d(x, pi) < ε. Then, using the Cauchy-Schwarz
inequality and the compatibility of ∇ with the metric, we get

‖ϕ(x)‖ = ‖ϕ(x)‖ − ‖ϕ(pi)‖ =

∫ 1

0

d

dt
‖ϕ(γ(t))‖dt ≤ ε‖∇ϕ‖C0

for some curve γ(t) from pi to x of length ≤ ε. Integrating over M gives

‖ϕ‖2L2 ≤ ε2‖∇ϕ‖2C0vol(M). (24)

For l > n/2 + 1 (e.g. l = (n+ 4)/2), the Sobolev Embedding Theorem gives an estimate ‖∇ϕ‖C0 ≤ ‖φ‖C1 ≤
c2‖ϕ‖W l which we estimate further using the elliptic estimate

‖ϕ‖W l ≤ c3
(
‖ϕ‖L2 + · · ·+ ‖Dlϕ‖L2

)
≤ c4(1 + |λ|)l‖ϕ‖L2

since ‖Diϕ‖L2 ≤ |λk|i‖ϕ‖L2 (λk is the largest eigenvalue). Putting this into (24) we get

‖ϕ‖L2 ≤ c4ε(1 + |λk|)
n+4
2

√
vol(M)‖ϕ‖L2 .

If ε ≤ 1

2c4
√

vol(M)
(1 + |λk|)−

n+4
2 we see ‖ϕ‖L2 = 0. Let ε0 = c5(1 + |λk|)−

n+4
2 . With this ε0 we have

therefore shown that the map χ is injective. This implies k = dim(V ) ≤ Nrk(S) which combined with
Nε0 ≤ c1ε−n0 = c6 · (1 + |λk|)

n(n+4)
2 proves the result.

5.3 Asymptotics of the Heat Kernel
Recall that in Rn with the standard metric the heat kernel (also called the fundamental solution to the heat
equation) is given by

kt(p, q) =
1

(4πt)n/2
exp(−d(p, q)2/(4t)),

as may be verified directly by putting it into the heat equation ∂
∂tϕ+ ∆ϕ = 0 (where the Laplacian is acting

on the p-variable of kt) and computing the limit limt7→0

∫
Rn kt(p, q)f(q)dvolRn(q) = f(p) for a compactly

supported f ∈ C∞(Rn). On a general Riemannian manifold (M, g) we define an approximation of the heat
kernel by the same formula (“Euclidean heat kernel”)

ht(p, q) =
1

(4πt)n/2
exp(−d(p, q)2/(4t)),

using now the geodesic distance d onM . The maps ht are defined for t > 0 and are smooth in a neighborhood
of points (p, q) of the diagonal in M ×M . We wish to approximate the actual heat kernel kt in terms of ht.

We begin by computing ( ∂∂t + ∆)ht(−, q) where now ∆ = d∗d is the connection Laplacian (also called
Laplace-Beltrami operator on C∞(M), the smooth real valued functions on M . Fix q ∈ M and consider
ht = h

(q)
t = ht(−, q) in local geodesic normal coordinates (x1, . . . , xn) around q. Let r2 = (x1)2 + · · ·+(xn)2.

Then
ht(−, q) =

1

(4πt)n/2
exp(−r2/(4t)).
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Lemma 129. We have
(
∂
∂t + ∆

)
ht(−, q) = r·ht(−,q)

4gt
∂g
∂r for g = det (gij(−)).

Proof. Let ∆ = ∇∗∇ be the connection Laplacian on functions. First, for the gradient (identifying T ∗M =
TM) we find

∇ht = −ht
2t
r∂r

so
∆ht = −ht

2t
∇∗(r∂r) +

r

2t

∂ht
∂r

(25)

where we use that ∇∗(fX) = f∇∗(X)− df(X) for f ∈ C∞(M), X ∈ C∞(TM). Using (15) we find

∇∗(r∂r) = −div(r∂r) = − 1
√
g
∂j(x

j√g) = −n− r

2g

∂g

∂r

where we use ∂r = r−1xj∂j . Putting this into (25) gives

∆ht =
−ht
2t

(
−n− r

2g

∂g

∂r

)
+

r

2t

∂ht
∂r

=
−ht
2t

(
−n− r

2g

∂g

∂r

)
− r2ht

4t2

On the other hand,
∂ht
∂t

=

(
−n
2t

+
r2

4t2

)
ht.

Keeping q fixed, we now make the following formal ansatz for the actual heat kernel kt:

kt(p, q) = ht(p, q)
(
Θ0(p, q) + tΘ1(p, q) + t2Θ2(p, q) + · · ·

)
, (26)

where Θj ∈ C∞(S � S∗) for j = 0, 1, . . .. We have the following product rule for the square of the Dirac
operator from [Roe, Lemma 7.13], which can be derived using synchronous orthonormal frames.

Lemma 130. For h ∈ C∞(M) and s ∈ C∞(S) we have

D2(h · s) = hD2s+ (∆h) · s− 2∇∇hs.

Combining the lemma with the above calculations for ht, we then get for s ∈ C∞(S � S∗q ) (note that for
fixed v ∈ Sq this is just a smooth section of S)(

∂

∂t
+D2

)
(ht · s) = ht

(
∂

∂t
+D2

)
s+

rht
4gt

∂g

∂r
s+

ht
t
∇r∂rs. (*)

Now formally write s = u0 + tu1 + t2u2 + . . . where uj(p) = u
(q)
j (p) := Θj(p, q). For s = tkuj the right-hand

side of (*) is

ht

(
jtj−1uj + tjD2uj +

r

4g

∂g

∂r
tj−1uj + tj−1∇r∂ruj

)
For s = tj−1uj−1 the right-hand side of (*) is

ht

(
(j − 1)tj−2uj−1 + tj−1D2uj−1 +

r

4g

∂g

∂r
tj−2uj−1 + tj−2∇r∂ruj−1

)
The coefficients of the terms with exponent tj−1 sum up to

D2uj−1 +∇r∂ruj +

(
j +

r

4g

∂g

∂r

)
uj
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If kt is a solution to the heat equation, these should all vanish. Beginning with u−1 = 0 we get a recursive
system of coefficients. A system of solutions (uj) then gives a formal candidate kt = ht(u0 + tu1 + t2u2 + . . .)
for the heat kernel. We therefore turn to the question of solving recursively the ordinary differential equations

D2uj−1 +∇r∂ruj +

(
j +

r

4g

∂g

∂r

)
uj = 0 (**)

Introduce the ‘integrating factor’ rjg1/4. Given uj−1, a solution uj of (**) needs to satisfy

∇∂r
(
rjg1/4uj

)
= jrj−1g1/4uj + rj

1

4
g−3/4 ∂g

∂r
uj + rjg1/4∇∂ruj

= rj−1g1/4

(
juj +

r

4g

∂g

∂r
uj +∇r∂ruj

)
=

{
0 (j = 0)

−rj−1g1/4D2uj−1 (j > 0).

We solve this equation for uj(r) ∈ C∞(Sp � S∗q ) ∼= End(Sq) (the identification uses parallel transport along
a radial geodesic from q to p) on geodesic rays, beginning at q. The solution for the first such equation is

r0g1/4u0 = const

for some constant, for which we choose idSq . For the higher solutions uj we must take

uj = −r−jg−1/4

∫ r

0

ρj−1g1/4(ρ)D2uj−1dρ ∈ C∞(S � S∗q ). (27)

(the integration constant zero is determined by the requirement that uj extends to a smooth function at
r = 0.) Note that each uj is only defined in a neighborhood of the diagonal in M ×M .

We have thus shown:

Proposition 131. For Θj(p, q) = u
(q)
j (p) we have a (formal) solution

ht(−, q)

 ∞∑
j=0

tjΘj(−, q)


of the heat equation for p close to q and t > 0. With the requirement Θ0(q, q) = idSq for all q ∈ M the
sequence (Θj) of smooth sections in C∞(S � S∗) (which is defined in a neighborhood of the diagonal in
M ×M) is uniquely determined. The functions Θj depend only on g and the covariant derivative ∇S and
can (in principle) be determined recursively by solving the above ordinary differential equation.

What is the relationship with the actual solution kt(−, q) of the heat equation? We claim that it is an
asymptotic development of the heat kernel: the `-th partial sum

k`t(p, q) = ht(p, q)

∑̀
j=0

tjΘj(p, q)


has the following property: For all ν,m > 0 there exists `(ν,m) so that for all ` ≥ `(ν,m) we have the
following estimate for the maximum norm of (at most) m-th derivates∥∥kt(p, q)− k`t(p, q)∥∥Cm ≤ C`,ν,m|t|ν
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for small |t| and some constant C`,n,m. We may thus view the sequence (k`t)`≥0 as a sort of Taylor expansion
of the heat kernel. But note that we are not claiming (as little as for usual Taylor expansions of smooth
functions R→ R) that for t > 0 this sequence is convergent in C∞(S � S∗).

We will henceforth write

ht ·
∞∑
j=0

tjΘj
t→0∼ kt

for this asymptotic behavior.
In the following we extend all Θj arbitrarily to smooth sections in C∞(S � S∗) defined on the whole of

M ×M . In particular the partial sums k`t ∈ C∞(S � S∗) are defined on M ×M . We will prove the above
estimates

∥∥kt − k`t∥∥Cm ≤ C`,ν,m|t|ν , |t| ≤ |t0|, for these extended k`t . We will see later that the essential
information of the asymptotic development of the heat kernel is in fact determined by the Θj around the
diagonal of M ×M , but for the following computation it is convenient to have k`t defined on the whole of
M ×M .

For the proof of the asymptotic behavior of k`t we examine to what extent k`t enjoys the characteristic
properties of a heat kernel. This is done in two steps.

1.) k`t(p,−)
t→0→ δp, uniformly in p.

Proof: For fixed p we split the relevant integral into two parts, over a ball Br(p) of (small) radius r, and its
complement ∫

M

k`t(p, q)s(q)dvol(q) =

∫
Br(p)

k`ts(q)dvol(q) +

∫
M\Br(p)

k`ts(q)dvol(q)︸ ︷︷ ︸
t→0−−−→0

where we use the fact that for p 6= q the heat kernel ht(p, q) is rapidly decreasing for t → 0. For the first
summand we get∫

Br(p)

k`ts(q)dvol(q) =

∫
Br(q)

ht(p, q)Θ0(p, q)s(q)dvol(q)︸ ︷︷ ︸
t→0−−−→s(p)+O(r)

+
∑̀
j=1

∫
Br(q)

ht(p, q)Θj(p, q)t
js(q)dvol(q)︸ ︷︷ ︸

t→0−−−→0

using the above calculation Θ0(p, q) = id +O(‖p − q‖) ∈ Hom(Sq, Sp) and the fact that the Euclidean heat
kernel ht(p,−) converges to δp for t→ 0. Letting r go to zero shows the claim.

2.)
(
∂
∂t +D2

)
k`t =

{
t`hte

`
t near the diagonal, for some e`t ∈ C∞(S � S∗),

ht
1
t γt outside a neighborhood of the diagonal, for some γt ∈ C∞(S � S∗), by (*).

For ` > ν+k+n/2 we have t−ν(t`hte
`
t)→ 0 in Ck for t→ 0. Moreover, t−ν

(
1
thtγt

)
→ 0 in Ck for t→ 0 since

ht is rapidly decreasing outside a neighborhood of the diagonal. In any case, we have shown ∀ν, k ∃`(ν, k)
so that for all ` > `(ν, k) we may write(

∂

∂t
+D2

)
k`t = tνr`t(p, q) ∈ O(|t|ν),

for rt ∈ C∞(S � S∗), r0 = 0, and rt is continuous in t ≥ 0 for the Ck-topology.
Now consider s`t(−, q) = kt − k`t . The left hand side is a solution of the inhomogenous heat equation(

∂

∂t
+D2

)
st = −tνrt(−, q) =: s̃t, s0 = 0.

On the other hand, such a solution st may always be written st =
∫ t

0
e−(t−τ)D2

s̃τdτ . Since k`t + st → δp for
t→ 0 as shown in part 1.) and by the uniqueness of solutions of the (homogenous) heat equation (which is
solved by k`t + st), we get

k`t(p, q) + st(p, q) = kt(p, q).
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Also, since r̃t → 0 for t→ 0 in the Ck-maximum norm, and hence in the W k-Sobolev norm, we have

‖st‖Wk ≤ t · Ck · sup{‖s̃τ‖Wk | 0 ≤ τ ≤ t} ≤ C ′k|t|ν+2

because e−(t−τ)D2

is bounded in all Sobolev norms. By the Sobolev Embedding Theorem we finally conclude
‖st‖Cm ≤ |t|ν+2 for |t| ≤ t0 for k > m+ n/2 finishing the proof of the asymptotic behavior of k`t .

We now determine the first Θj . Recall that we work in normal coordinates centered to q, which is held
fixed. We have already seen that Θ0(p, q) : Sq → Sp is given by parallel transport along the geodesic ray
from q to p and then multiplying with the factor g−1/4(p) (recall that g(p) = det(gij(p)). To put this into
a formula, we work in the following frame. Let (f1, . . . , fd) by an orthonormal basis of Sq. We may extend
these along geodesic rays emanating at q to get an orthonormal frame fi(p) on our chart neighborhood.
Then

u
(q)
0 (p) = Θ0(p, q)

(
vjfj(q)

)
= g−1/4(p)vjfj(p), vj ∈ R. (28)

Recall from our earlier discussion (27) that

u1(r) = −1

r
g−1/4(r)

∫ r

0

g1/4(ρ)D2u0 dρ.

Hence Θ1(q, q) = u1(0) = −(D2u0)(0). It remains to compute D2u0. For fixed q and v = vjfj(q) ∈ Sq we
may view u0(v) as a section s ∈ C∞(S) by s(p) = Θ0(p, q)v. Applying Lemma 130 to (28) we get

D2s(q) = vj
(
g−1/4D2(fj) + ∆(g−1/4) · fj − 2∇∇g−1/4fj

)∣∣∣
q

(29)

The covariant derivatives of fj all vanish in q, so the last term is zero. By the Weitzenböck formula
(Theorem 33) we have

D2(fj)(q) = K(q)(fj),

because ∆(fj)(q)
(11)
= −

∑
i∇∂i,∂i(fj) = 0 (note that ∇∂ifj is constantly zero along the coordinate axis xi

by construction of fj).
Moreover, in normal coordinates from (7) we get

g = det(gij) = 1− 1

3
Rickl(q)x

kxl +O(r3)

so
g−1/4 = 1 +

1

12
Rickl(q)x

kxl +O(r3).

This gives

∆(g−1/4)(q) = −
∑ ∂2

∂x2
i

g−1/4(q) = −1

6
scalg(q).

Here we recall that by equation (15) the laplacian of a function f : M → R in local coordinates around q is
given by

∆(f) = −div(gradf) = − 1
√
g
∂k(
√
ggkj

∂f

∂xj
)

so that the calculation is justified by the expansion of g−1/4 around q stated above and the fact that
gkj(q) = δkj .

Now we have evaluated all terms in (29). In summary,

u1(0) = −D2s(q) =
1

6
scalg(q) idSq −K(q)

Example 132. In the special case S = Λ∗T ∗M we know that D2 = d∗d+dd∗ is the Hodge Laplacian, which
restricted to C∞(M) is the usual Laplace-Beltrami operator ∆ and

Θ0(q, q) = idSq , Θ1(q, q) =
1

6
scalg(q) idSq .

Next, on C∞(Λ1T ∗M) we have Θ0(q, q) = id, Θ1(q, q) = 1
6 scalg(q)− Rc(q) for the Ricci endomorphism.
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5.4 Spectral Geometry
Let

0 ≤ λ0 ≤ λ1 ≤ · · ·

be the eigenvalues of D2, counted with multiplicity. We define the trace of e−tD
2

as

tr(e−tD
2

) :=

∞∑
i=0

e−tλi .

Using Exercise sheet 11 we have the equality

∞∑
i=0

e−tλi =

∫
M

tr(kt(p, p))dvol(p). (30)

with the heat kernel (kt) of e−tD
2

. Using the asymptotic expansion of kt and noting that for the Euclidean
heat kernel we have ht(p, p) = 1

(4πt)n/2
we obtain

tr(e−tD
2

)
t→0∼ 1

(4πt)n/2

∞∑
j=0

tj
∫
M

tr(Θj(p, p))dvol(p). (31)

In the special case of the Laplace-Beltrami operator ∆ on C∞(M) the previous computation implies

∞∑
i=0

e−tλi
t→0∼ 1

(4πt)n/2

(
vol(M) +

1

6

∫
M

scalg(p)dvol(p) · t+O(t2)

)
.

It follows that the spectrum of ∆ determines the dimension n, the volume and the total scalar curvature of
M .

The spectrum of ∆ does not determine M up to isometry! Indeed there exist non-isometric manifolds
(M, g) and (M ′, g′) which are isospectral, i.e. whose Laplacians have identical eigenvalues, counted with
multiplicity. The first such examples are due to Milnor, see also Mark Kac’s article: “Can one hear the
shape of a drum?” and the corresponding Wikipedia article. The question which properties of (M, g) are
determined by the spectrum of the Laplace operator is treated by the subject called spectral geometry. In
physical language one asks which properties of a (geometric) object are determined by the spectrum of its
emitted radiation.

Remark 133. For the Laplace-Beltrami operator ∆ on C∞(M) the number of eigenvalues N(Λ) less than
Λ is given asymptotically by N(Λ) ∼ 1

(4π)n/2Γ(n/2+1)
vol(M)Λn/2 (this means that the quotient converges to

1). This famous result, which sharpens our Proposition 128 is called Weyl asymptotics.

6 The Index Theorem

6.1 The Index of Graded Dirac Operators
Let (Mn, g) be a compact Riemannian manifold equipped with a Dirac bundle (S,∇S) → M (real or
complex). Recall from Definition 31 that the corresponding Dirac operator D : C∞(S)→ C∞(S) is given by

D(s) =

n∑
i=1

ei · ∇ei(s)

for a (local) orthonormal frame ei of TM .

Definition 134. A Z/2-grading on S is a bundle endomorphism ε : S → S satisfying
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1. ε2 = id, this means ε is an involution.

2. ε is self-adjoint, that is, (εs1, s2) = (s1, εs2) for s1, s2 ∈ Sx, x ∈M .

3. ε anti-commutes with Clifford-multiplication, so ε(v · s) = −v · ε(s) for v ∈ C∞(TM) and s ∈ C∞(S).

4. ε is parallel, i.e., we have ∇Sv (ε s) = ε
(
∇Sv s

)
Given such a grading we get an orthogonal decomposition S = S+ ⊕ S− into (±1)-eigenspaces of ε (here

we use 1. and 2.). The Dirac operator restricts maps D± : C∞(S±)→ C∞(S∓), by 3. and 4. Conversely, such
an orthogonal decomposition S = S+⊕S− defines a Z/2-grading, provided the connection preserves each of
the bundles S± and Clifford multiplication exchanges S+ and S−. The map ε is then given by ε|S± = ± id.
For this decomposition the Dirac operator splits as

D =

(
0 D−
D+ 0

)
. (32)

In particular, D∗+ = D− are adjoints of each other. Moreover, ker(D) = ker(D+) ⊕ ker(D−) which is an
orthogonal decomposition into finite-dimensional subspaces ker(D±) ⊂ C∞(S±).

Example 135. 1. Let S = Λ∗(T ∗M). Recall from (13) that the corresponding Dirac operator is the
deRham operator D = d+d∗ : Ω∗(M)→ Ω∗(M), using the notation Ω∗(M) =

⊕
k Ωk(M) and Ωk(M) =

C∞(M,Λk(T ∗M)). On the Dirac bundle S we define ε(w) = (−1)deg(w)w so that

S+ =
⊕
k even

Λk(T ∗M), S− =
⊕
k odd

Λk(T ∗M).

The corresponding Dirac operator D+ : Ωev(M)→ Ωodd(M) is called the Euler operator.

2. Let S = Λ∗(T ∗M)⊗C. We then again have a grading S = Λev⊕Λodd, as in the last example. However,
there exists a second grading when dimM = n is even and M is oriented.
For an orthonormal frame (e1, . . . , en) of TM the volume element is given by ω = e1 · · · en ∈ C∞(Cl(TM))
(exercise sheet 3/2 ). Note that this defined a global form on M because M is oriented. Recall also
ω2 = (−1)

n(n+1)
2 and vω = (−1)n−1ωv for v ∈ C∞(TM).

We now define a grading by ε(s) = imω · s, where m = n/2. This is a grading since ε2 = 1 and since
Clifford multiplication with ω is self-adjoint (as n is even). We have

ωs = (−1)
k(k−1)

2 ∗ (s), s ∈ ΛkT ∗M ⊗ C.

This follows since v · s = v ∧ s− ιvs (Proposition 22):

e1 · · · en · (e1 ∧ · · · ∧ ek) = (−1)
n(n−1)

2 en · · · e1(e1 ∧ · · · ∧ ek)

= (−1)
n(n−1)

2 (−1)ken · · · ek+1 · 1 = (−1)
n(n−1)

2 (−1)k(−1)
(n−k)(n−k−1)

2 ek+1 · · · en · 1

= (−1)
n(n−1)+2k+(n−k)(n−k−1)

2 ek+1 ∧ · · · ∧ en = (−1)
k(k−1)

2 ∗ (e1 ∧ · · · ∧ ek)

The corresponding Dirac operator D = d + d∗ : C∞(S+) → C∞(S−) is called the signature operator
(so the bundles S± are the ±1-eigenbundles of the operator ε = im+k(k−1)∗).

3. Let (M2m=n, g) be a spin manifold with corresponding spinor bundle S →M . Recall that this bundle is
associated to the complex representation ∆ of Cl(2m) (exercise sheet 5/3 ), i.e. S = PSpin(M)×Spin(n)∆.
We recall that when restricted to Spin(2m) this representation splits into the (only) two irreducible
representations ∆ = ∆+ ⊕∆−. Clifford multiplication v ∈ Rn interchanges ∆±. Hence

S = S+ ⊕ S−, S± = PSpin(M)×Spin(n) ∆±

and we obtain a corresponding Dirac operator D± : C∞(S±) → C∞(S∓). This is the so-called spinor
Dirac operator, also called Atiyah-Singer operator, compare the end of Section 3.
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Definition 136. Let S = S+ ⊕ S− →M be Z/2-graded Dirac bundle with corresponding Dirac operator D.
The index of D is defined as

ind(D) = dim kerD+ − dim kerD− ∈ Z.

(taking the real or complex dimension, according to the case at hand.) Recall here that by elliptic regularity
these kernels are finite-dimensional.

Remark 137. Note that the index is equal to dim ker(D+) − dim ker(D∗+). Without grading, the index
dim ker(D)− dim ker(D∗) would automatically vanish, since D is self-adjoint.

Example 138. 1. For the Euler operator we have S+ = Ωev, S− = Ωodd and D = d+ d∗. It follows that
kerD+ =

⊕
k evenHk(M) are the even harmonic forms on M . Hence kerD+ = Hev

dR(M) by Hodge
theory. Similarly, kerD− = Hodd

dR (M). Hence we obtain the Euler characteristic as index

ind(D) = dimHev(M)− dimHodd(M) = χ(M).

This is a purely topological invariant of M , in particular it is independent of the metric.

2. For the signature operator on an oriented 4l = 2m = n-dimensional manifold we have

ε = im+k(k−1)∗ : Λk(T ∗M)⊗ C→ Λn−k(T ∗M)⊗ C

Consider 0 ≤ k ≤ n with k 6= n/2. We consider ε on (α, β) ∈ Λk ⊕ Λn−k. Because ε2 = 1, we have

ε(α, β) = (α, β)⇔ εα = β.

Hence ker (D+|Λk⊕Λn−k) = {ω ∈ Ωk(M)⊗C | (d+ d∗)ω = 0} = Hk(M ;C) since ∗ preserves harmonic
forms (given ω ∈ Hk(M ;C), the element (ω, ∗ω) ∈ ker (D+|Λk⊕Λn−k) lies in the kernel). Similarly,
ker (D−|Λk⊕Λn−k) = Hk(M ;C). It follows that

ind(D) = dim kerD+|Λm − dim kerD−|Λm

is concentrated in the middle dimension m. For ω ∈ Ωm we have εω = im+m(m−1) ∗ ω = ∗ω since m
is even. Hence kerD±|Λm = {ω ∈ Hm(M) | ∗ω = ±ω} is given by (anti)-self-dual forms. These are
related to the signature of M , defined as the signature of the non-degenerate symmetric bilinear form

ψ : (α, β) 7→
∫
M

α ∧ β

(exercise sheet 10/4 ). In a suitable basis, ψ takes the form

ψ =

(
Er 0
0 −Es

)
and the signature of M is r − s. Now for a self-dual ω ∈ Hm+ (M) with ‖ω‖ = 1 we have∫

M

ω ∧ ∗ω =

∫
M

(ω, ω)dvol = 1,

using the definition of the Hodge operator (Definition 23). Similarly, ψ(ω, ω) = −1 for a harmonic
anti-self-dual form. Hence the index is the signature

ind(D) = dimHm+ (M)− dimHm− (M) = sign(M),

which is again a purely topological invariant.
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3. For the spinor Dirac operator, what is ind(D)? Is it also a topological quantity, as in the previous
two examples? The answer is yes. Indeed, the Atiyah-Singer Index Theorem (Atiyah-Singer, 1968)
expresses ind(D) in terms of topological quantities (for any Dirac operator D). It was first proven
using topological K-theory and later (Atiyah-Bott-Patodi, 1973) by using the asymptotics of the heat
kernel, which is the approach we shall follow.

Given a general Dirac operator D± : C∞(S±) → C∞(S∓), we consider D2
+ := D− ◦ D+ : C∞(S+) →

C∞(S+) and similarly D2
− = D+ ◦D− : C∞(S−)→ C∞(S−). Hence

D2 = D2
+ ⊕D2

− : C∞(S+)⊕ C∞(S−)→ C∞(S+)⊕ C∞(S−).

The eigenspace decomposition of D2 induces corresponding eigenspace decompositions for D2
+, D

2
− (note

that the grading operator ε commutes with D2):

Eig(D2, λ) = Eig(D2
+, λ)⊕ Eig(D2

−, λ).

For λ = 0, we have D2
+s = 0 precisely when D+s = 0. The non-trivial implication follows from 0 =

〈D2
+s, s〉 = 〈D+s,D+s〉. Hence

Eig(D2
±, 0) = kerD2

± = kerD± (33)

We know that all eigenvalues λ of D2 are non-negative. We have already considered the case λ = 0, so
suppose λ > 0. The operator D+ induces a map

D+ : Eig(D2
+, λ)→ Eig(D2

−, λ) (34)

since D2
−D+(s) = D+D−D+(s) = D+D

2
+(s) = λ(D+s) for s ∈ Eig(D2

+, λ). Similarly,

D− : Eig(D2
−, λ)→ Eig(D2

+, λ). (35)

The composition of (34) with (35) is just multiplication by λ : Eig(D2
+, λ)→ Eig(D2

+, λ). It follows that

Eig(D2
+, λ) ∼= Eig(D2

−, λ).

Definition 139. We define
tr e−tD

2
± :=

∑
λ±i

e−tλ
±
i

as the trace of the operators e−D
2
± . (Note that the right hand side is absolutely convergent). The super trace

of the Z/2-graded operator D2 is defined as

trS e
−tD2

= tr e−tD
2
+ − tr e−tD

2
− .

Note that by (32) the trace of e−tD
2

is tr e−tD
2

= tr e−tD
2
+ + tr e−tD

2
− . In this respect the supertrace is

a Z/2-graded version of the absolute trace.

Corollary 140. Let 0 ≤ λ+
0 ≤ λ+

1 ≤ · · · and 0 ≤ λ−0 ≤ λ−1 ≤ · · · be the eigenvalues of D2
+ and D2

−,
respectively. All non-zero eigenvalues agree and occur with the same multiplicity (the multiplicity of the
eigenvalue zero may differ). Together with (33) we obtain the McKean-Singer formula (1967)

trS e
−tD2

= tr e−tD
2
+ − tr e−tD

2
− =

∑
λ+
i

e−tλ
+
i −

∑
λ−i

e−tλ
−
i = dim kerD+ − dim kerD− = ind(D).

Recall that e−tD
2

is the time evolution operator for the heat equation, so that st = e−tD
2

s0 is a solution
of the heat equation with initial condition s0.
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For t→∞ the operator e−tD
2
± converges towards the projection onto the kernels of D2

± (in the operator
norm for L2). Indeed, applying functional calculus to D2 and the function e−tλ

2

shows that only the non-zero
eigenvalues survive in the (time) limit under the heat evolution. Hence

trS e
−tD2 t→∞−−−→ trπkerD2

+
− trπkerD2

−

for the orthogonal projections π onto the kernels.
We know already that trS e

−tD2

is constant in t! The information for t → 0 is also interesting. From
(30) and (31) we have an asymptotic expansion for t→ 0

trS e
−tD2

=

∫
M

trS kt(p, p)dvol(p) ∼ 1

(4πt)n/2

∞∑
j=0

tj
∫
M

trS Θj(p, p)dvol(p).

Note that by construction of the asymptotic development of the heat kernel in Section 5.3 (by iteratively
solving ODE’s for the functions uj) each of the endomorphisms Θj(p, p) : Sp → Sp respects the decomposition
into positive and negative parts. Also recall that this integrand is determined by the local geometry of
M around p. Since trS e

−tD2

is constant in t, we get (n even) that ind(D) is simply the constant term
1

(4π)n/2

∫
M

trS Θn/2(p, p)dvol(p) in the Taylor expansion.

Theorem 141. [Atiyah-Singer Index Theorem, First Version] For n odd, we have ind(D) = 0. For n even,

ind(D) =
1

(4π)n/2

∫
M

trS Θn/2(p, p)dvol(p). (36)

It remains to compute the integral on the right. We know that Θn/2(p) = Θn/2(p, p) only depends on
g,∇S around p, but their explicit computation is difficult. They will be treated later using Getzler calculus.

Corollary 142 (Homotopy Invariance). Let (gt)t∈[0,1] be a smooth family of Riemannian metrics on M .
Let (St,∇t)→M be a corresponding family of Z/2-graded Dirac bundles. Then ind(D0) = ind(D1).

Proof. The integral in (36) depends continuously on t and is also the integer ind(Dt). Hence it is constant.

Remark 143. This homotopy invariance of the index was observed by Gel’fand in 1959. He then heuristically
argued that the index should only depend on topological data (and in particular is independent of the metric
g). The explicit computation of the index was called the ‘index problem’ and was solved by Atiyah-Singer.

Corollary 144 (Multiplicity for Coverings). Let S → M be a Dirac bundle and suppose π : M ′ → M is a
d-sheeted covering. Then S′ = π∗S → M ′ is again a Dirac bundle. The index of the Dirac operator D′ on
S′ is then given by

ind(D′) = d · ind(D)

Example 145. For n = 2 let (M2, g) be a closed oriented Riemann surface. Let D be the Euler operator.
Recall that S+ = Λev(T ∗M) = R⊕ R and S− = Λodd(M) = Λ1(T ∗M). Hence

d+ d∗ = D+ : C∞(M)⊕ C∞(M)→ Ω1(M).

By (36),

χ(M) = ind(D) =
1

4π

∫
M

trS Θ1(p)dvol(p)

for the operator Θ1(p) : Λ∗T ∗pM → Λ∗T ∗pM whose restriction to ΛjT ∗pM → ΛjT ∗pM we denote by Θj
1(p).

The right hand side is
1

4π

∫
M

(
tr Θ0

1 − tr Θ1
1 + tr Θ2

1

)
dvol(p)
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Identifying Ω2(M) ∼= C∞(M), the Laplace-Beltrami D2 = dd∗+d∗d : C∞(M)⊕C∞(M)→ C∞(M)⊕C∞(M)
restricts to the Laplace operator on functions. Recall from Example 132 that

Θ0
1(p) =

1

6
scalg(p) = Θ2

1(p), Θ1
1(p) =

1

6
scalg(p)− Rc(p)

The traces of Θ0
1(p) = Θ2

1(p) = 1
6 scalg(p) agree, while (note that S+ has rank two)

tr Θ1
1(p) =

1

3
scalg(p)− scalg(p).

Hence we obtain the Gauß-Bonnet Theorem

χ(M) =
1

4π

∫
M

1

3
scalg(p)−

1

3
scalg(p) + scalg(p)dvol(p) =

1

4π

∫
M

scalg(p)dvol(p),

which therefore turns out to be a special case of the Atiyah-Singer Index Theorem.

6.2 The Getzler Filtration
We return now to the general theory, where we are given a complex Z/2-graded Dirac bundle S± →Mn=2m

and corresponding Dirac operator D± : C∞(S±) → C∞(S∓). To make (36) more useful, it remains to
understand Θn/2 and the right hand side in more detail. This will enable us to prove the following main
theorem of this course:

Theorem 146 (Atiyah-Singer Index Theorem). Assume that the grading operator ε on S is the canonical
grading, given by multiplication with imω (see the next section). Then we may calculate the index as

ind(D) =

∫
M

Â(TM) ∧ ch(S/∆).

Here, Â(TM) and ch(S/∆) are differential forms that depend only on the curvature of M and S, respectively
(defined below). Via Chern-Weil theory the integral expression on the right can be expressed in terms of
characteristic classes of TM and S.

For more general gradings on S, a similar formula holds (see Exercise sheet 14).

Recall that Θj was defined in (26) as the asymptotic correction terms for the heat kernel on M , as
compared to the heat kernel on the torus. Keeping q fixed, Θj can be computed recursively via solutions
uj = Θj(−, q) of the ordinary differential equation

∇∂/∂r(rjg1/4uj) = −rj−1g1/4D2uj−1, u−1 = 0. (37)

(see the proof of Lemma 130.)

6.2.1 Clifford Representations

The following decomposition of an endomorphism is crucial for the Getzler calculus.

Lemma 147. Let W be a complex representation of Cl(n). Then

EndC(W ) = Cl(n)⊗ EndCl(W ). (38)

Proof. Recall from (57) that the complexified Clifford algebra Cl(n) ∼= C2m×2m is a matrix algebra and there-
fore has a unique irreducible representation ∆ ∼= C2m . If W is another faithful complex Cl(n)-representation
W we may therefore write W = ∆⊗C V (so we take dimV many copies of ∆), where

W/∆ := V = HomCl(n)(∆,W ).
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This follows from Schur’s Lemma,
HomCl(n)(∆,∆) ∼= C (39)

It is a special case of the isotypical decomposition of a representation. From this we get

EndC(W ) = EndC(∆)⊗C EndC(V ) = Cl(n)⊗C EndC(V ) ∼= Cl(n)⊗R EndC(V ). (40)

Similarly, EndCl(n)(W ) ∼= EndCl(n)(∆)⊗ EndC(V ) = EndC(V ) by (39).

The next proposition is also fundamental for the proof of the Atiyah-Singer Index Theorem. It implies
that in evaluating the integral (36), we need only concentrate on those parts with highest “Clifford degree”.

Proposition 148. Let W be a complex Clifford representation of Cl(n) for n even, let F = c ⊗ f ∈
EndC(W ) ∼= Cl(n)⊗ EndC(V ) (using the above decomposition), and let c =

∑
cIeI . Then

trS F = (−2i)n/2c1,...,ntr f =: (−2i)n/2c1,...,ntrW/∆(F ). (41)

(Using the canonical isomorphism W = ∆⊗C V , the Z/2-grading defines a grading on W . The super-trace
of the endomorphism F of W is with respect to this grading.)

Proof. Viewing elements of Cl(n) = EndC(∆) as endomorphisms of ∆, we have4

trF = tr c · tr f. (42)

On ∆ we have a canonical Z/2-grading given by ε = imω for the volume element ω = e1 · · · en. Then

W = (∆+ ⊗ V )⊕ (∆− ⊗ V )

defines Z/2-grading on W . Similar to (42) we then find for the super trace of F ∈ EndC(W )

trS F = trS c · tr f.

It remains only to prove the following lemma.

Lemma 149. Let c =
∑
I⊂{1,...,n} cI · eI ∈ Cl(n) where eI =

∏
i∈I ei for the standard basis ei of Rn=2m and

cI ∈ R. Then, regarding c ∈ End(∆), we have

trS (c) = (−2i)mc{1,...,n}. (coefficient of the top part of c)

Proof. For c = eI we have
trS (c) = tr (ε ◦ c) = tr (imωc)

and

imωeI =

{
(−1)mim for I = {1, . . . , n} (recall ω2 = (−1)m)

λeJ for I 6= {1, . . . , n} (for some λ ∈ C and J 6= ∅ complementary to J)

Since e∅ = id: ∆ → ∆, we have tr (e∅) = 2m. However, for I 6= ∅ we get tr (eI) = 0. This is because
End(∆) = ∆⊗∆∗ and eI acts on both ∆ and End(∆) by left multiplication on ∆. Let us denote the action
of eI on End(∆) by εI . Then, as dim ∆∗ = 2m,

tr (eI) =
1

2m
tr (εI).

But εI is left-multiplication on Cl(n) = End(∆) and permutes the basis ei1 · · · eik (up to scalars) without
fixing any basis vector as I 6= ∅. Hence it has trace equal to zero.

4More generally, tr (A⊗B) = tr (A) ·tr (B) for endomorphisms A ∈ End(V ), B ∈ End(W ) of finite-dimensional vector spaces
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6.2.2 Taylor Expansion

Let V be a finite-dimensional vector space. Recall that CJV K is the C-algebra of formal power series in
elements of V and coefficients in C. More formally, CJV K is the quotient of the tensor algebra TV by the
ideal generated by v ⊗ w − w ⊗ v for v, w ∈ V . It is the free commutative C-algebra generated by V .

Definition 150. Let s ∈ C∞(S � S∗). Fixing q we get a section sq = s(−, q) of the bundle S ⊗ S∗q . For p
close to q we may use parallel transport along the geodesic from q to p to identify this bundle with the trivial
bundle End(Sq). Precomposing with the exponential map gives (defined in a neighborhood of zero)

TqM
exp−−→M

sq−→ End(Sq)

which is a smooth map of finite-dimensional vector spaces. The Taylor expansion of this map is an element
of CJT ∗qMK ⊗ End(Sq). In more detail, if we choose normal coordinates (xi) centered at q (so choosing an
orthonormal basis of TxM), this is just the ordinary Taylor expansion of a vector-valued map Sq : Rn →
End(Sq). We write this asymptotic expansion as

sq ∼
∑
α

sαx
α, xα = xα1

1 · · ·xαnn , sα ∈ End(Sq) (43)

for

sα =
1

α1! · · ·αn!

∂|α|Sq
∂xα

(0).

Letting q vary, Taylor expansion clearly defines a section τ(s) of CJT ∗MK⊗ End(S).

Remark 151. 1. We have used the short-hand notation xi = dxi. Then the right-hand side of (43)
defines an element of CJT ∗qMK⊗ End(Sq).

2. s(q, q) is the constant term τ(s)(q)0 of the Taylor expansion.

3. As familiar from calculus, the Taylor expansion needn’t converge or represent our function.

4. Working in arbitrary coordinates, higher derivatives of functions are usually not well-defined (leading
to jet bundles). In the context of Riemannian manifolds, we may use normal coordinates at q which
are well-defined up to a linear transformation. Then higher derivatives are well-defined.

As an endomorphism of Sq it can be written in the form s0 =
∑
µ cµ⊗fµ ∈ End(Sq) as in Proposition 41

so trS s0 =
∑
µ trS (cµ) · tr (fµ), where trS cµ was computed by looking at the coefficient of the top Clifford

part of cµ ∈ Cl(TqM) (at least if Sq carries the canonical grading).

Plan: Develop a calculus that assigns simpler objects to sections in C∞(S � S∗) (viewed as smoothing
kernels of smoothing operators C∞(S) → C∞(S)) and also to differential operators C∞(S) → C∞(S).
These simpler objects should have a ‘degree’. Clifford multiplication with v ∈ TqM should raise the degree
by 1, while multiplication with a coordinate function xi should lower the degree by 1 (in a sense to be made
precise). To compute the trace it suffices then to consider the contribution in top degree n = dimM . This
assignment should be compatible with the composition of differential operators with smoothing operators:
For a differential operator P ∈ D(S) and a smoothing operator Q : C∞(S)→ C∞(S) with smoothing kernel
s, i.e.

Q(ϕ)(p) =

∫
M

s(p, q)ϕ(q)dq,

recall that the composite P ◦Q is the smoothing operator with kernel Pps(·, ·) where Pp denotes the differential
operator P acting only on the p-entry of s.
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6.2.3 Filtered Algebras and Symbol Maps

We start with the differential operators. Recall that D(S) is the algebra of differential operators C∞(S)→
C∞(S). Recall our traditional filtration

D(S) ⊃ · · · ⊃ Dk(S) ⊃ Dk−1(S) ⊃ · · · ⊃ D0(S) = End(S).

by differential operators Dk(S) of order up to k.

We recall the following general definition:

Definition 152. A filtered algebra is an algebra A with a sequence of vector subspaces Ak satisfying

Ak ⊃ Ak−1, Ak ·Al ⊂ Ak+l,
⋃
Ak = A.

On every filtered algebra we have the order function f : A → Z ∪ {−∞}, f(x) = min{k ∈ Z | x ∈ Ak}.
The order function satisfies

f(x+ y) ≤ max(f(x), f(y)), f(x · y) ≤ f(x) + f(y), f(0) = −∞, f(λx) ≤ f(x)

for x, y ∈ A and λ ∈ C. Conversely, given a function f : A→ Z∪ {−∞} on A with these properties, we may
define a filtration by

Ak = {x ∈ A | f(x) ≤ k}.

We shall also write A≤k for Ak. Thus, order functions and filtrations are equivalent points of view. For us,
the main example of a filtered algebra will be the differential operators A = D(S).

Definition 153. 1. The trivial filtration on V is given by Vk = V for all k.

2. Let Vk ⊃ Vk−1 and Wl ⊃Wl−1 be filtrations of V and W . Then (V ⊗W )n =
⊕

k+l=n Vk ⊗Wl defines
the tensor product filtration of V ⊗W .

3. If f : W → V is a homomorphism and V is filtered, then Wk = f−1(Vk) defines the pullback filtration
on W .

Definition 154. A graded algebra is an algebra A with a decomposition A =
⊕
Am into vector subspaces

satisfying An ·Am ⊂ An+m for the product.

We take it as a convention that upper indices denote a grading, while lower indices denote a filtration.
Any graded algebra may be regarded as filtered, by A≤k =

⊕
i≤k A

i. There is also an obvious grading on
the tensor product of graded algebras. We call an algebra trivially graded if A = A0 is only in degree zero.

Definition 155. Let Am be a filtered algebra. A symbol map consists of a graded C-algebra G∗ = G0⊕G1⊕· · ·
and a family of linear maps σm : Am → Gm with the following properties:

1. σm|Am−1
= 0

2. σm(a) · σm′(a′) = σm+m′(aa
′) for a ∈ Am, a′ ∈ Am′

Example 156. 1. Let Gm = Am/Am−1 with the projection σm : Am → Gm, the universal symbol. The
graded algebra

⊕
m≥0 Gm is called the associated graded algebra of the filtered algebra A.

2. A = Cl(n) and Am = Span{eI | |I| ≤ m}. The associated graded algebra Gm = Am/Am−1 is isomorphic
to the exterior algebra G∗ = Λ∗Rn. Here, for example, σ2 maps the Clifford product v · w to v ∧ w,
compare Proposition 22.
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6.2.4 The Principal Symbol

Definition 157. For vector bundles E,F → M let P ∈ Dm(E,F ) be a differential operator of order ≤ m.
Let ξ ∈ T ∗xM be a cotangent vector and let f : M → R be a smooth function with f(x) = 0 and df(x) = ξ.
We define the principal symbol of P with respect to ξ as the linear map σm(P, ξ) : Ex → Fx given by

σm(P, ξ)(e) :=
1

m!
P (fmẽ)x ∈ Fx, e ∈ Ex.

Here ẽ ∈ C∞(E) is an extension of e to a smooth section.

We need to show that this is well-defined. For this, let (x1, . . . , xn) be local coordinates near x and write
ξ = ξidx

i ∈ T ∗xM . Write P =
∑
|α|≤mA

α(x) ∂|α|

∂
α1
1 ···∂

αn
n

. Then

1

m!
P (fmẽ)x =

1

m!

∑
|α|≤m

Aα(x)
∂|α|(fmẽ)

∂α1
1 · · · ∂

αn
n

(x)

f(x)=0
=

1

m!

∑
|α|=m

Aα(x)
∂|α|(fm)

∂α1
1 · · · ∂

αn
n

(x) · e

=
∑
|α|=m

ξα1
1 · · · ξαnn Aα(x) · e

Obviously, the right-hand side is independent of ẽ and f . On the other hand, our definition is independent
of the representation of the differential operator P in local coordinates. Hence the symbol is independent of
both.

Remark 158. Let us think about the variance of this expression under coordinate change. From the coordi-
nates (x1, . . . , xn) we get a frame (∂1, . . . , ∂n) of TxM whose coordinates (η1, . . . , ηn), viewed as linear maps
TxM → R, are equal to the cotangent vectors ηi = dxi. Similarly, the frame (dx1, . . . , dxn) of T ∗xM leads
to coordinates (ξ1, . . . , ξn) which, when viewed as linear maps T ∗xM → R, may be identified with ξi = ∂i (by
identifying the double dual of a vector space with the vector space itself ). Hence the entries ξi in the above
expression for the symbol, viewed as linear maps T ∗xM → R, ξ 7→ ξi(ξ), can be identified with ∂i ∈ TxM .

Hence, identifying ξi = ∂i, we may view the m-th principal symbol map as a section (cf. [Roe])

σ(P ) ∈ C∞(C[TM ]⊗Hom(E,F )), σ(P )(e) :=
∑
|α|=m

∂α1
1 · · · ∂αnn Aα · e,

where C[V ] =
⊕

m≥0 Symm(V ), where Symm(V ) ⊂ V ⊗m are the symmetric tensors (meaning that they
are invariant under the obvious action of the symmetric group Σm on V ⊗m), or in other words, formal
homogenous polynomials in elements of V of degree m.

Example 159. Consider d : Ωk(M) → Ωk+1(M), so m = 1. Let ξ = ξidx
i ∈ T ∗xM . For ω ∈ ΛkT ∗xM

extended to a k-form on M we have

σ(d, ξ)ω = d(fω)|x = (df ∧ ω + fdω)|x
f(x)=0

= ξ ∧ ω.

6.2.5 The Getzler Filtration

Let S →M be a complex Dirac bundle. From Equation 40 we have an isomorphism

EndC(S) = Cl(TM)⊗ EndCl(TM)(S),

which will be used to define a filtration on EndC(S).
Recall from Proposition 20 that the Clifford algebra is filtered by Cl(k)(V ) = π(

⊕k
r=0 V

⊗r), for the
canonical projection π : TV → Cl(V ). Equivalently, Cl(k)(V ) = λ(ΛkV ) using the isomorphism λ : Λ∗(V )→
Cl(V ) of Proposition 20. This is called the Clifford filtration.
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Definition 160. The Clifford filtration on EndC(S) is the tensor product of the Clifford filtration of Cl(TM)
and the trivial filtration on EndCl(TM)(S).

Utilizing this filtration for differential operators D(S), we will define the Getzler filtration on differential
operators. By Definition 59 and (40), the differential operators D(S) are generated as an algebra by

1. EndCl(TM)(S),

2. X ∈ C∞(TM) (we write c(X) ∈ End(S) for the corresponding Clifford multiplication),

3. ∇X for X ∈ C∞(TM).

We define filtration by specifying the order function on these generators:

Definition 161. The Getzler filtration on D(S) is defined by

1. For ϕ ∈ EndCl(TM)(S) we let ordG(ϕ) = 0.

2. For X ∈ C∞(TM) Clifford multiplication c(X) has ordG(c(X)) = 1.

3. For X ∈ C∞(TM) let ordG(∇X) = 1.

In other words, the Getzler filtration is

DGm(S) = spanC

{
P = λ1 · · ·λk |

k∑
i=1

ordG λi ≤ m

}

where λ1, . . . , λk are generators as in 1., 2., 3. We write DG(S) for the algebra of differential operators with
this filtration.

Note that convention 2. is different from our old filtration convention (where the order was zero). It is
our goal to define the Getzler symbol map

σ∗ : DG(S)→ C∞ (P(TM)⊗ Λ∗(T ∗M)⊗ EndCl(S)) . (44)

Definition 162. Define a vector bundle over M by

P(TM) := C[T ∗M ]⊗ C[TM ].

At x ∈M , ϕ ∈ P(TM)x may be written as finite sum

ϕ =
∑

µJI dx
I ⊗ ∂J , µJI ∈ C.

We will regard ϕ as a differential operator on smooth functions on TxM

ϕ(x) : C∞(TxM,C)→ C∞(TxM,C), f 7→
∑

ϕJI x
I ∂
|J|f

∂xJ
(x)

with polynomial coefficients ϕJ =
∑
I ϕ

J
I ∈ C[T ∗xM ] in the coordinates xi := dxi : TxM → R on T ∗xM . In

particular, the algebra structure on P(TM) is not the tensor product of algebras. Instead, we have(
xI∂J

)
·
(∑

xK∂L

)
= xI

∑
α+β=J

(
α

β

)
∂α(xK)∂β+L.

Note that in [Roe] the coordinate dxi : TxM → R is denoted xi again. This is justified by the fact
that under the canonical identification T0(TxM) = TxM this coordinate satisfies the tautological equation
∂
∂yi = ∂

∂xi . This amounts to the intuition that the linear map xi = dxi : TxM → R is the infinitesimal
version of the coordinate xi : M → R. We will follow this convention.
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Remark 163. For ϕ ∈ C∞(C[TM ]) ⊂ C∞(C[T ∗M ]⊗C[TM ]) we have ϕ(x) =
∑
µJ∂J with µJ ∈ C, which

gives a differential operator C∞(TxM,R) → C∞(TxM,R) for each x ∈ M with constant (as opposed to
polynomial) coefficients. In accordance with [Roe], we also write C(TM) = C[TM ]. We then have

C∞(C(TM)⊗ Cl(TM)⊗ EndCl(S)) = C∞(C(TM)⊗ EndC(S))

which is the target of the principal symbol map on D(S), compare Example 12.8 in [Roe]. Hence, for the
Getzler symbol map we replace C[TM ] by the refined P[TM ] and the bundle Cl(TM) (viewed as a filtered
algebra in the Getzler calculus) by the associated graded algebra Λ∗TM .

According to our Definition 155 of symbol maps, we must define a grading on the target bundle of algebras
P(TM) ⊗ Λ∗T ∗M ⊗ EndCl(S) of the Getzler symbol (44). We will use the tensor product grading, where
Λ∗(T ∗M) gets the usual grading and EndCl(S) has the trivial grading. Finally, on P(TM) we define:

Definition 164. Homogeneous elements ϕ(x) = xI ⊗ ∂J ∈ P(TxM) are defined to have degree |J | − |I|.

P(TxM)k =

 ∑
|J|−|I|=k

µJI x
I ⊗ ∂J

∣∣∣∣∣∣ µJI ∈ C


As a final preparation, we consider the following section, defined for each vector field X ∈ C∞(TM)

(RX, ·) ∈ C∞(T ∗M ⊗ Λ2T ∗M) ⊂ C∞(P(TM)⊗ Λ2T ∗M) (45)

of degree 1. At x ∈M it is the map TxM → Λ2T ∗xM given by (RX(−,−), Y ). Stated otherwise,

(RX, ·) ∈ C∞(Λ2T ∗M ⊗ T ∗M), (S ∧ T )⊗ Y 7→ (R(S, T )X,Y ).

Recall that the Riemannian curvature tensor R ∈ Ω2(M ; End(TM)) can locally be expressed by functions
Rijkl = −g(R(ei, ej)ek, el) ∈ C∞(M) for any local (not necessarily orthonormal) frame (e1, . . . , en) of
TM . The Rijkl are antisymmetric for the first two and the last two entries and symmetric with respect to
interchanging i, j with k, l, see Equation (5). Let us work out (45) in local coordinates (x1, . . . , xn) on M
with ei = ∂xi . We define (Rij)

n
i,j=1 to be the (n× n)-matrix of 2-forms

Rij =
∑
k<l

Rijkldx
k ∧ dxl = Rij =

∑
k<l

Rklijdx
k ∧ dxl = −(R∂i, ∂j) ∈ Λ2T ∗M.

(using Rijkl = Rklij .) The local expression of (RX, ·) for X = ai∂i used in [Roe] and in the literature is

R(X, ·) = −aiRijxj .

In particular, the degree of (45) is one.

6.3 The Getzler Symbol
Recall that the bundle of algebras P(TM)⊗Λ∗(T ∗M)⊗EndCl(S) is graded by the tensor product grading.
As explained before, the degree of xI∂J ∈ P(TM) is |J |−|I|, we take the usual grading on differential forms,
and let every element of EndCl(S) have degree zero. Note that we also get non-zero elements in negative
gradings. The sections of this bundle is then a graded algebra, which a possible target for a symbol map in
the sense of Definition 155.

6.3.1 Statement of the Main Theorem

We will use the obvious inclusions

TM, T ∗M ↪→ P(TM), P(TM),Λ∗(T ∗M),EndCl(S) ↪→ P(TM)⊗ Λ∗(T ∗M)⊗ EndCl(S).
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Theorem 165. There exists a symbol map (the Getzler symbol)

σGm : DGm(S)→ C∞ (P(TM)⊗ Λ∗(T ∗M)⊗ EndCl(S))
m

uniquely characterized by the properties (see Definition 161 for definition of the Getzler filtration on DG(S)).

1. σG0 (ϕ) = ϕ for ϕ ∈ EndCl(S).

2. σG1 (c(X)) = X[ ∈ Λ∗(T ∗M) for X ∈ C∞(TM).

3. σG1 (∇X) = ∂X − 1
4 (RX, ·) ∈ C∞(P(TM)⊗ Λ2(T ∗M)) for X ∈ C∞(TM). (Note that ∂X := X can be

canonically viewed as a section in C∞(P(TM).)

Proof. Uniqueness is clear, since we have defined the symbol on all generators of the algebra D(S) of differ-
ential operators. The problem with existence is that a differential operator may be decomposed in several
ways into the generators; it is not clear that our definition will be coherent. We will prove this by considering
the action of differential operators T ∈ D(S) on smoothing operators Q by post-composition T ◦Q (whose
kernel T (kQ(·, q)) is obtained by applying T only in p-direction). This will require some preparation, in
particular we must define the symbol of a smoothing operator. This is done in the next section, after which
we return to the proof of Theorem 165.

6.3.2 The Canonical Symbol on Smoothing Operators

We now define the symbol of a smoothing operator. For clarity, we shall call it the canonical symbol, although
it may also be viewed as a generalization of the Getzler symbol to pseudo-differential operators. We begin
by defining the canonical filtration on smoothing operators C∞(S � S∗).

Fix geodesic normal coordinates (x1, . . . , xn) near a point q ∈M . The Taylor expansion of the smoothing
kernel s = kQ(−, q) near q has the form (see Definition 150)

s ∼
∑

sαx
α

and may be regarded as a section of CJT ∗qMK⊗End(Sq) ∼= CJT ∗qMK⊗Cl(TqM)⊗EndCl(Sq). For varying q
we hence obtain the Taylor expansion map

τ : {Q : C∞(S)→ C∞(S) | Q smoothing operator} → C∞(CJT ∗MK⊗ End(S)).

The power series algebra CJT ∗MK has a filtration by assigning to xα(= (dx)α) the filtration degree −|α|, as
usual. Recall the Clifford filtration on End(S) from Definition 160. Passing to the associated graded algebra
defines the Clifford symbol

σCl
k : End(S)≤k = Cl(k)(TqM)⊗ EndCl(S)→ Λk(TqM)⊗ EndCl(S).

We take the tensor product filtration on CJT ∗MK⊗ End(S).

Definition 166. The canonical filtration on C∞(S � S∗) is the pullback filtration along the map τ .

Hence the filtration degree of a smoothing operator is defined by passing to its Taylor expansion: if at
every point q ∈ M we have s(−, q) ∼

∑
sαx

α (for normal coordinates (xi) at q) with sα ∈ End(Sq)≤k+|α|
in Clifford filtration, then by definition s has canonical filtration ≤ k. Notice that in this filtration xα has
order −|α| so that we get elements of filtration order m for all m ∈ Z.

Definition 167. Suppose s ∈ C∞(S � S∗) lies in canonical filtration ≤ k. For fixed q ∈ M let s(−, q) ∼∑
sαx

α in normal coordinates at q. The Clifford symbol σ(s)|q of s at q ∈M is∑
σCl
k+|α|(sα)xα ∈ CJT ∗qMK⊗ Λ∗(TqM)⊗ EndCl(Sq).

Letting q vary, identifying TM ∼= T ∗M by the metric, and projecting to the homogenous part of degree k on
the right hand side, we get the canonical symbol

σk : C∞(S � S∗)≤k → C∞(C[T ∗M ]⊗ Λ∗(T ∗M)⊗ EndCl(S))k.

67



Note that the target of this map has the tensor product grading of the graded algebras C[T ∗M ], Λ∗(T ∗M),
and EndCl(S), the last being trivially graded (with degree 0). Also note that Λ∗(T ∗M)⊗EndCl(S) sits only
in finitely many degrees so that we can replace the power series algebra CJT ∗MK by the polynomial algebra
C[T ∗M ]. This is in contrast to [Roe], paragraph in front of Definition 12.20, who keeps CJT ∗MK in the target
of the canonical symbol. It seems that with Roe’s definition the symbol σk does not vanish on smoothing
operators of canonical filtration degree ≤ k− 1, which leads to difficulties in the proof of Lemma 168, which
corresponds to [Roe], Prop. 12.22.

Our map σk (by definition) maps C∞(S�S∗)≤k−1 to zero. Note, however, that although we can compose
smoothing operators and hence put an algebra structure on the set of smoothing operators C∞(S)→ C∞(S),
this map is not compatible with σ. Therefore σ is not a symbol map in the sense of Definition 155. Rather
we will use the compatibility of the canonical symbol σ with the Getzler symbol σG on differential operators
under the natural action of differential operators on smoothing operators given by composition, see Lemma
168 below.

6.3.3 Proof of Theorem 165

The bundle C∞(C[T ∗M ] ⊗ Λ∗(T ∗M) ⊗ EndCl(S)) is a module over C∞(P(TM) ⊗ Λ∗(T ∗M) ⊗ EndCl(S))
by means of the bundle map

P(TM)⊗ C[T ∗M ]→ C[T ∗M ]

defined at x ∈ M by letting a differential operator µJI x
I∂J : C∞(TxM,C)→ C∞(TxM,C) with polynomial

coefficients µJI x
I ∈ C[T ∗xM ] act on a polynomial

∑
cαx

α ∈ C[T ∗xM ] as a derivation in the usual way. Note
that this is defined by the usual linear action of ∂i on xj = dxj (i.e. ∂i(xj) = δji ) and the Leibniz rule on
products xα. Hence we indeed get a bundle map. On Λ∗(T ∗M) and EndCl(S) the module map is induced
by the usual multiplication. This module structure is used in the following lemma to compose the symbols.

Lemma 168. Let T ∈ DG(S) be a generator of the algebra of differential operators, so ordG(T ) = m ∈ {0, 1}.
Let Q be a smoothing operator in filtration ≤ k. Then T ◦ Q is a smoothing operator in filtration ≤ k + m
and the canonical symbols are related by

σk+m(T ◦Q) = σGm(T ) · σk(Q).

(here σGm(T ) is the Getzler symbol of the generator T as defined in Theorem 165.)

Proof of Theorem 165. Decompose an arbitrary T ∈ DG(S)m into generators S1 · · ·Sr of Getzler order ≤ 1
and so that their orders add up tom (by definition of the Getzler filtration) and then an inductive application
of our lemma shows that T ◦Q has Getzler order ≤ k +m and

σGk+m(TQ) = σG(S1) · · ·σG(Sr) · σGk (Q) ∈ C∞(C[T ∗M ]otimesΛ∗(T ∗M)⊗ EndCl(S)).

But σGk (Q) and σGk+m(TQ) are defined without any reference to the decomposition of T , so the algebra element
σG(S1) · · ·σG(Sr) ∈ C∞(P(TM)⊗ Λ∗(T ∗M)⊗ EndCl(S)) is uniquely determined by this equation, because
C∞(P(TM)⊗Λ∗(T ∗M)⊗EndCl(S)) acts faithfully on the module C∞(C[T ∗M ]⊗Λ∗(T ∗M)⊗EndCl(S)).

Definition 169. A section of a bundle E →M with connection over a Riemannian manifold M is said to
be synchronous at q ∈ M if for all points p in a neighborhood of q the section is parallel along the geodesic
from q to p.

Proof of Lemma 168. Fix q ∈ M and let (xi) denote normal coordinates at q. Let kQ ∈ C∞(S � S∗)k be
the smoothing kernel of Q and consider the Taylor expansion

s := kQ(−, q) ∼
∑

sαx
α ∈ (CJT ∗qMK⊗ Cl(TqM)⊗ EndCl(Sq))≤k,

where sα ∈ End(Sq)≤k+|α|. We consider the generators T case by case.
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1. Suppose ϕ ∈ C∞(EndCl(S)). Consider the Taylor expansion around q

ϕ ∼
∑

ϕβx
β , ϕβ ∈ EndCl(Sq).

Then ϕ(q) = ϕ0 and
ϕ ◦ s =

∑
α

ϕ0(sα)xα︸ ︷︷ ︸
filt ≤k

+
∑

α,|β|>0

ϕβ(sα)xα+β︸ ︷︷ ︸
filt ≤k+|α|−|α|−|β|≤k−1

lies in canonical filtration ≤ k and has canonical symbol
∑
α σ

Cl
k+|α|(ϕ0(sα))xα = σG(ϕ)σ(s)|q.

2. Let X ∈ C∞(TM) and Taylor expand X ∼
∑
Xβx

β around q, where X0 = Xq. Then

c(X)s =
∑
α

c(X0)sαx
α︸ ︷︷ ︸

filt ≤1+k

+
∑

α,|β|>0

c(Xβ)sαx
α+β︸ ︷︷ ︸

filt ≤1+k−|β|≤k

has canonical filtration ≤ k + 1 with σ(c(X)s) =
∑
αX

[
q ∧ σCl

k+|α|(sα)xα = σG1 (c(X))σ(s)|q.

3. Let ∂i = X ∈ C∞(TM) and consider T = ∇X . We begin by considering the case where s in synchronous
at q, so that sα = 0 except for s0 = s(q). Write

∇Xs ∼
∑

tαx
α.

Let Y =
∑
xj∂j be the unnormalized radial vector field. We have [X,Y ] = X = ∂i, ∇Y s = 0, and

Y αxα = |α|xα. Consider the Taylor expansion of KS(X,Y ) · s for the curvature tensor KS of S:

−
∑

(|α|+ 1)tαx
α ∼ ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s = KS(X,Y ) · s ∼

∑
j,α

(KS
ij)αs0x

jxα. (46)

There is a decomposition5 KS
ij = RSij +FSij into the Riemannian endomorphism RSij ∈ End(Sq)≤2 with

σCl
2 (RSij) = − 1

2Rij and twist curvature FSij ∈ EndCl(Sq) = End(Sq)≤0, which is treated on exercise
sheet 13. Putting this into the right hand side of (46) and comparing coefficients gives

tα =
−1

|α|+ 1

∑
j : αj>0

[
(RSij)α + (FSij)α

]
s0.

Hence t0 = 0 and tα is in filtration ≤ k + 2. This implies that ∇Xs ∼
∑
tαx

α is in filtration ≤ k + 1,
our first claim. To compute the symbol, we may work in Fk+1/Fk. Neglecting terms of filtration ≤ k,
we see that tαxα, having filtration ≤ k + 2− |α|, vanishes unless |α| = 1. Hence

σk+1(∇Xs) =
∑
j

σCl
k+2(tj)x

j =
∑
j

σCl
2 (RSij)σ

Cl
k (s0)xj =

∑
j

1

4
Rijσ

Cl
k (s0)xj (47)

This clearly equals

σG1 (∇X)σk(s) =

(
∂i +

1

4
Rijx

j

)
σCl
k (s0).

This completes the proof in case s in synchronous. We now consider the general case. By the Leibniz
rule for the covariant derivative we have6 (see the following lemma for justification)

∇Xs ∼
∑
α

(
∇X(sα)xα + αisαx

α−ei
)

5 We define the twist curvature FS by KS = RS + FS for the Riemannian endomorphism given by RS(X,Y ) =
1
2

∑
k<l c(ek)c(el)g(R(X,Y )ek, el) ∈ End(S). The twist curvature is a Cl-linear section of Ω2(End(S)) (exercise sheet 13).

6We set xα = 0 if some αi < 0.
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By the case we have already considered, ∇X(sα) has canonical filtration ≤ k + |α| + 1. Hence both
summands in the expansion have canonical filtration ≤ k + 1. For the symbol we get

σk+1(∇Xs) =
∑
α

[
σk+|α|+1(∇X(sα))xα + αiσk+|α|(sα)xα−ei

]
which agrees with (using the case already proven for sα)

σ1(∇X)σk(s) =
∑
α

(
∂i +

1

4
Rijx

j

)
σCl
k+|α|(sα)xα.

Lemma 170. Let s ∈ C∞(S ⊗ S∗q ) have Taylor expansion s ∼
∑
sαx

α at q. Then

∇Xs ∼
∑
α

[∇X(s̃α)xα + sαX(xα)]

where s̃α is the synchronous extension of sα ∈ End(Sq) (∇X(s̃α)|q is zero, but higher terms appear in the
Taylor expansion. In the formula ∇X(s̃α) denotes this Taylor expansion).

Proof. Let τ(x) denote parallel transport from q to x. Assuming the Taylor expansion s(x) =
∑
τ(x)sαx

α

converges, the Leibniz rule shows

∇Xs =
∑
α

∇X(τsα)xα + sαX(xα).

Finally, note that s̃α(x) = τ(x)sα.

6.3.4 Reduction to the Mehler Formula

Recall the Getzler filtration on DG(S) and the canonical filtration on smoothing operators C∞(S�S∗). For
these we defined symbol maps σG and σ which are compatible with the module structure of C∞(S � S∗)
over DG(S). The module structure on the ranges of the symbol maps was defined in at the beginning of
Section 6.3.3. This situation may be depicted as follows.

DG(S)≤m C∞(S � S∗)≤k

C∞(CJT ∗MK⊗ Cl(TM)⊗ EndCl(S))≤k

C∞(P(TM)⊗ Λ∗(T ∗M)⊗ EndCl(S))m C∞(C[T ∗M ]⊗ Λ∗(T ∗M)⊗ EndCl(S))k

composition

σG module action

Taylor

σ

Recall also that we studied the heat kernel kt, which is characterized by(
∂

∂t
+D2

p

)
kt(−, q) = 0, (∀q ∈M),

by means of an asymptotic expansion kt(−, q) = ht(−, q)
(∑∞

j=0 t
juj

)
where uj = Θj(−, q). The main result

of Section 5.3 was that the uj ∈ C∞(S ⊗ S∗q ) may be determined recursively as solutions of the differential
equation

∇∂/∂r(rjg1/4uj) = −rj−1g1/4D2uj−1, u−1 = 0, u0(q) = idSq . (48)
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(see the proof of Lemma 130.) Of course for the Index Theorem, Equation (36), one does not need to know
every uj , it suffices to understand the Getzler symbol of un/2. By the remarkable design of the Getzler
symbols, the symbols σG(uj) are recursively determined by simpler equations, which we will derive from
(48), that may be solved explicitly (Mehler formula).

Proposition 171. The square of the Dirac operator D2 ∈ DG(S)≤2 has Getzler filtration ≤ 2 and symbol
at q ∈M

σG(D2)|q = −
∑
i

 ∂

∂xi

∣∣∣∣
q

+
1

4

∑
j

Rij(q)x
j

2

+ FS(q)

Here, FS(q) denotes the twist curvature at q (see page 69).

Here Rij is computed with help of an orthonormal frame (ei = ∂
∂xi ) of TqM and (xi) = (dxi) is the dual

frame on T ∗qM .

Proof. Putting the definition of twist curvature into the Weitzenböck formula (Theorem 33), one gets

D2 = ∇∗∇+
1

4
scalg + F.

Here, F =
∑
k<l c(ek)c(ek)FS(ek, el) has Getzler filtration ≤ 2. Combined with

∇∗∇ = −
∑
i,j,k

gjk
(
∇j∇k − Γijk∇i

)
it follows that D2 has Getzler filtration ≤ 2. For symbols we have

σG2 (∇∗∇)q = σ2(−
∑
i

∇i∇i) = −
∑
i

(
∂

∂xi
+

1

4
Rij(q)x

j

)2

σG2 (scalg) = 0

σG2 (F )|q =
∑
k<l

ekekF
S(ek, el)|q = FS(q).

For a function f and section s we have the composition formula

σk(fs) =
∑
i+j=k

σi(f)σj(s). (49)

In particular, if s has filtration ≤ k, then

σk(fs) = fσk(s)

since f has filtration ≤ 0 and s has no components > k.

Proposition 172. The (uj) are in filtration ≤ 2j. Let vj = σ2j(uj) ∈ CJT ∗qMK ⊗ Λ∗(T ∗qM) ⊗ EndCl(Sq).
Then

jvj + σG0 (∇r∂r )vj = −σG2 (D2)vj−1, (50)

where we set σG0 (∇r∂r ) := xi
(
∂
∂xi + 1

4Rijx
j
)
.

We find the corresponding formula on the first part of p. 162 in [Roe] misleading. Roughly speaking
the operator ∂

∂r appearing on the left of that equation must be replaced by the the Getzler symbol of this
operator, which involves a curvature term. Fortunately, this is consistent with the proof of Corollary 173
below so that the the “symbol heat equation” for W derived in [Roe] holds.
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Proof. We rewrite (48) as
jg1/4uj +∇r∂r (g1/4uj) + g1/4D2uj−1 = 0

for all r 6= 0 and the radial vector field ∂r = 1
rx

j∂j , using normal coordinates at q. Hence Y = r∂r is
a smooth vector field which vanishes at q. Since by induction D2uj−1 has canonical filtration ≤ 2j (by
Proposition 171 and Theorem 165) it follows from Equation (27) that uj has canonical filtration ≤ 2j at q.
Applying the canonical symbol map at q gives

jσ2j(uj) + σ2j(∇r∂rg1/4uj) + σ2j(D
2uj−1) = 0.

Note that Lemma 168 does not apply to the middle term since uj does not have filtration ≤ 2j−1. It equals

σ2j(∇r∂r (g1/4uj)) = σ2j(∇r∂r (g1/4) · uj) + σ2j(g
1/4 · ∇r∂r (uj)) = σ2j(∇r∂ruj),

applying Equation (49) because of the facts that ∇r∂ruj = xi∇iuj has filtration ≤ 2j and

r
∂

∂r
g1/4 = r

∂

∂r

(
1− 1

24

∑
k,l

Rick,lx
kxl + · · ·

)
has filtration ≤ −1.

We now calculate this middle term σ2j(∇r∂ruj) by hand. Let uj ∼
∑
α uαx

α for uα ∈ End(Sq). Then from
Y xα = |α|xα and Lemma 170 we get

σ2j(∇r∂ruj) =
∑
α

σ2j+|α|(∇r∂r ũα)xα + σ2j+|α|(uα)|α|xα.

Symbols of sections of the kind ∇r∂r (ũα) have be calculated in the proof of Lemma 168 3. in (47):

σ2j+|α|(∇r∂r ũα) =
1

4
Rijσ

Cl
k (uα)xixj

Hence the middle term equals

σ2j(∇r∂ruj) =
1

4
Rijx

ixjσ2j(uj) + xi
∂

∂xi
σ2j(uj) = xi

(
∂

∂xi
+

1

4
Rijx

j

)
vj

The power series solutions vj =
∑
aKx

K with aK ∈ Λ(T ∗qM) ⊗ EndCl(Sq) of the polynomial-coefficient
differential equation of (50) are unique, given the initial condition v0 = idSq . For the proof, suppose by
induction that vj−1 = 0. Then (50) is simply the difference equation

(j + |K|)aK +
1

4

∑
i,j

RijaK−ei−ej = 0,

where we set aK = 0 if some component of K = (k1, . . . , kn) is negative. Another induction shows that
aK = 0. Hence vj = 0.

Corollary 173. For t > 0 let Wt = ht(v0 + tv1 + · · ·+ tn/2vn/2) ∈ C[T ∗qM ]⊗Λ∗(T ∗qM)⊗EndCl(Sq), where
we set7 ht(x) = (4πt)−n/2 exp(−‖x‖2/4t) and vj = σ2j(uj)|q. Then

∂W

∂t
+ σ2(D2)|qWt = 0. (51)

Let wj ∈ C[T ∗qM ]⊗ Λ∗(T ∗qM)⊗ EndCl(Sq) have degree 2j and suppose ht(w0 + tw1 + · · ·+ tn/2wn/2) solves
(51) with w0 = idSq . Then wj = σ2j(uj)|q. Hence the solutions of (51) of this form with given initial
condition w0 = idSq are unique.

7In the coordinates of T ∗
qM induced by normal coordinates at q
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Proof. It remains only to see that solutions of (51) of the type ht(v0 + tv1 + · · · + tn/2vn/2) correspond
exactly to solutions of the system of equations (50). An explicit computation shows the following analogue
of Lemma 130

σG2 (D2)(ht · s) = ht · σG2 (D2)(s) + (∆ht) · s+
ht
t
σG0 (∇r∂r )(s).

Recall also

∆ht =

(
n

2t
− r2

4t2

)
ht,

∂h

∂t
=

(
−n
2t

+
r2

4t2

)
ht

Putting the last two equations into the left-hand side of (51) and dividing by ht gives(
n

2t
− r2

4t2

)
vjt

j + (j + 1)vj+1t
j +

(
n

2t
− r2

4t2
vjt

j

)
+ σG0 (∇r∂r )vj+1t

j

=
(
(j + 1)vj+1 + σ2(D2)(vj) + σG0 (∇r∂r )(vj+1)

)
tj

This power series is zero precisely when (50) holds.

6.4 The Mehler Formula
Proposition 174 (Mehler Formula). Let R ∈ Cn×n be a complex skew-symmetric matrix RT = −R, let
F ∈ C. Suppose n = 2m is even. The differential equation

∂w

∂t
−

n∑
i=1

(
∂

∂xi
+

1

4
Rijx

j

)2

wt + Fwt = 0 (52)

has the (obviously analytic in R) solution

wRt (x) = (4πt)−n/2det1/2

(
tR/2

sinh tR/2

)
exp

(
− 1

4t

〈
tR

2
coth

tR

2
x, x

〉)
exp(−tF ). (53)

Remark 175. If R is not invertible, the expression det1/2 is set to zero. Else the generalized eigenvalues8 of
R occur in pairs ±λ1, . . . ,±λm and give rise to double eigenvalues of the symmetric matrix tR/2

sinh tR/2 , whose

determinant is therefore
∏m
i=1

(
tλi/2

sinh tλi/2

)2

. We define

det1/2

(
tR/2

sinh tR/2

)
=

m∏
i=1

tλi/2

sinh tλi/2
.

Alternatively, one may use the Jordan canonical form of R to define f(R) for any power series f(z).
The expression coth tR2 is defined in this way using the power series coth(tz/2). Then one can also de-

fine det1/2
(

tR/2
sinh tR/2

)
= det(f(R)) for f(z) =

√
tz/2

sinh tz/2 , the unique square-root of the power series with
constant term 1.

Proof. In principle, we need only put (53) into (52). To make the calculation more manageable, we do a
series of reductions. Since R is skew-symmetric we find a unitary matrix U so that

UT ·R · U =


0 −λ1

λ1 0
. . .

0 −λm
λm 0

 .

8The zeros of det(R−X · En)
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In case R =

(
0 −θ
θ 0

)
and F = 0, formula (53) simplifies to

wθt (x) := (4πt)−1

(
tϑ

sinh(tϑ)

)
exp

(
− 1

4
ϑ|x|2 coth(tϑ)

)
, ϑ = iθ/2.

The function wRt may be expanded in terms of these as a product

wRt (Ux) = wλ1
t (x1, x2) · · ·wλnt (xn−1, xn) exp(−tF ).

Since U is linear, an easy application of the Leibniz and chain rule shows that wRt solves (52) in case each
wθt solves the corresponding 2-dimensional equation, which we rewrite as

∂wθ

∂t
=

(
∂

∂x
− θy

4

)2

wθt +

(
∂

∂y
+
θx

4

)2

wθt

=

(
∂2

∂x2
+

∂2

∂y2

)
wθt +

1

16
θ2(x2 + y2)wθt +

1

2
θ

(
x
∂

∂y
− y ∂

∂x

)
wθt︸ ︷︷ ︸

=0

.

The last summand vanishes since wθt is obviously rotationally symmetric, so it remains to check

∂wθ

∂t
=

(
∂2

∂x2
+

∂2

∂y2

)
wθt +

1

16
θ2(x2 + y2)wθt . (54)

Clearly, wθt (x, y) = wθt (x) · wθt (y) is a product of functions of one variable, given by

wθt (x) = (4πt)−1/2

(
tϑ

sinh(tϑ)

)1/2

exp
(
− 1

4
ϑx2 coth(tϑ)

)
, ϑ = iθ/2.

To prove (54), it suffices to check the following for this one-dimensional function:

∂wθ

∂t
=
∂2wθ

∂x2
− 1

4
ϑ2x2wθt .

We calculate:

∂w

∂t
=

(
− 1

2t
+

1− tϑ coth(tϑ)

2t
− 1

4
ϑ2x2(1− coth(tϑ)2)

)
wθt

=

(
−1

2
ϑ coth(tϑ)− 1

4
ϑ2x2(1− coth(tϑ)2)

)
wθt

∂w

∂x
= −1

2
ϑx coth(tϑ) · wθt

∂2w

∂x2
= −1

2
ϑ coth(tϑ)wθt +

1

4
ϑ2x2 coth2(tϑ)wθt

Inserting tangent vectors X,Y ∈ TqM into (51), Proposition 171 shows the resulting differential equation
to be of the form (52). The solution (53) is a polynomial in t since for the curvature 2-form Rj = 0 for
j > n/2. Hence the uniqueness statement in Proposition 51 applies:

Corollary 176. For each q ∈M let Wt be defined as in Corollary 173. Then

Wt = (4πt)−n/2det1/2

(
tR/2

sinh tR/2

)
exp

(
− 1

4t

〈
tR

2
coth

tR

2
x, x

〉)
exp(−tFS(q)),

for the curvature matrix R at q and the twist curvature FS(q)
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6.5 Genera
6.5.1 Complex Vector Bundles

Let f = 1 +
∑∞
k=1 akX

k ∈ CJXK be a normalized formal power series with complex coefficients ai.
For a complex vector bundle E → M with inner product and compatible connection, we denote the

curvature 2-form by R∇ ∈ Ω2(M ; EndE).

Definition 177. The Chern f -genus is defined as

Kf (E,∇) = det f

(
i

2π
R∇
)
∈ Ωev(M ;C).

Here, the (nilpotent) curvature form is formally inserted into the formal power series f . Thus9

f

(
i

2π
R∇
)

= 1 +

∞∑
k=1

ak

(
i

2π

)k
R∇ ∧ · · · ∧R∇︸ ︷︷ ︸

k times

∈ Ωev(M ; End(E)),

which is then post-composed with the determinant End(E)→ C.

The proof of the following proposition can be found in the appendix of the book Characteristic Classes
by Milnor-Stasheff [MS]. It is based on the Bianchi identity.

Proposition 178. The differential form Kf (E,∇) is closed. Its de Rham cohomology class is independent
of the chosen metric and connection on E.

Definition 179. The Chern polynomials ck : Cn×n → C are defined as the k-homogeneous components in

n∑
k=0

ck(R)tk = det (1 + tR) .

Hence c0(R) = 1, c1(R) = trR, and cn(R) = detR. The k-th Chern form of the complex vector bundle E is

ck(E,∇) = ck

(
i

2π
R∇
)
.

The de Rham cohomology classes are called Chern classes. It can be shown [MS] that they represent classes
in the integral cohomology [ck(E,∇)] ∈ H2k(M ;Z), the k-th Chern class of E.

More generally, ck(R) is the k-th elementary symmetric polynomial σk(λ1, . . . , λn) in the eigenvalues of
R. Returning to Chern classes for a complex vector bundle E, pure algebra allows us to adjoin n elements
x1, . . . , xn to the de Rham cohomology algebra so that we may write

ck(E,∇) = σk(x1, . . . , xn).

It is not hard to see then that we may rewrite the Chern f -genus as

[Kf (E,∇)] =

n∏
j=1

f(xj) =: Kf (c1, c2, . . .)

Since the product is symmetric in the xj , it may be expanded in terms of the elementary symmetric poly-
nomials ck(E,∇) which defines Kf on the right.

9Note that only finitely many summands are non-zero
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Definition 180. The Chern character of E is

ch(E) = tr

(
exp

(
i

2π
R∇
))
∈ Ωev(M ;C).

This defines a closed differential form and hence a de Rham cohomology class. Using the formal variables
above the Chern character may be rewritten as

[ch(E)] =

n∑
i=1

exi = dimE + c1 +
1

2
(c21 − 2c2) + · · ·

Suppose that S →M is a complex Dirac bundle. Recall from (38) the decomposition

EndC(Sq) = Cl(n)⊗ EndCl(Sq), EndCl(Sq) = EndC(V )

where Sq = ∆ ⊗ V in the isotypical decomposition. Decomposing an endomorphism F = c ⊗ f in this
way defined, as we recall, the relative trace tr S/∆F = tr (f) (this is related to the super trace of F by
Equation 41). The curvature R∇ of S is a 2-form with values in EndC(S). The twist curvature FS is a
2-form with values in EndCl(Sq). In this special situation we define:

Definition 181. ch(S/∆) = tr S/∆ exp
(
i

2πF
S
)

For example, if S = ∆S⊗V has the tensor product connection (∆S = PSpin(M)×Spin ∆ is the spinor bun-
dle with its connection inherited from M and V is another vector bundle with inner product and compatible
connection) then ch(S/∆) = ch(V ).

6.5.2 Real Vector Bundles

Let E → M be a real vector bundle with inner product and compatible connection ∇. Let g(z) = 1 +∑∞
k=1 αiz

i be a normalized formal power series. Define

f(z) =
√
g(z2) = 1 +

∞∑
i=1

β2iz
2i

where the root has been chosen so that f is normalized.

Definition 182. The Pontrjagin g-genus is10

Kg(E,∇) = det

(
f

(
i

2π
R∇
))

.

Similarly as for complex bundles we may introduce new formal variable y1, . . . , yn (the rank of E is n)
for which

[Kg(E,∇)] =

n∏
i=1

g(yi) =: Kg(p1, p2, . . .), pi = σi(y1, . . . , yn).

Again it follows from the theory of characteristic classes [MS] that pk ∈ H4k(E;Z) can be identified with
the k-th Pontrjagin class of E.

Example 183. 1. The Â-series is gÂ(z) =
√
z/2

sinh
√
z/2

= 1− 1
24z+ 7

5760z
2 · · · . The corresponding Pontrjagin

genus is called the Â-genus (or Â-class). We have

KgÂ(p1, p2, . . .) = g(y1) · · · g(yn) = 1− 1

24
(y1 + · · ·+ yn) +

7

5760
(y2

1 + · · ·+ y2
n) +

1

242
(y1y2 + y1y3 + · · · )

= 1− 1

24
p1 +

1

5760
(7p2

1 − 4p2) + · · ·
10This is just the Chern f -genus of E ⊗ C
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2. The L-series is gL(z) =
√
z

tanh
√
z

= 1+ 1
3z−

1
45z

2 + · · · . The Pontrjagin genus for L is called the L-genus
or L-class. Then

KgL(p1, p2, . . .) = 1 +
1

3
p1 +

1

45
(7p2 − p2

1) + · · ·

6.6 Proof of the Index Theorem
After 77 pages of tedious preparation, we happily arrive at a complete proof of the main theorem:

Theorem 184 (Atiyah-Singer Index Theorem). Let S → M be a Dirac bundle over a closed oriented
Riemannian manifold Mn=2m with the canonical grading. Then we may calculate the index as

ind(D) =

∫
M

Â(TM) ∧ ch(S/∆).

Proof. In Theorem 141 we found the following expression for the index:

ind(D) =
1

(4π)n/2

∫
M

trS Θn/2(q, q)dvol(q).

Recall that we write Θj(p, q) = u
(q)
j (p). By (41) the super trace of

∑
cIeI⊗φI = u

(q)
n/2(q) ∈ Cl(n)⊗EndCl(Sq)

is (−2i)mc{1,...,n}tr
S/∆φ{1,...,n}dvol(q) = (−2i)mtr S/∆σn(un/2) (the Getzler symbol vn/2 = σn(un/2) exactly

picks out this component). Hence

ind(D) =
1

(2πi)m

∫
M

tr S/∆v
(q)
n/2(q)

=
1

(2πi)m

∫
M

tr S/∆
(
v

(q)
0 (q) + · · ·+ v

(q)
n/2(q)

)
=

1

(2πi)m

∫
M

tr S/∆W q
t=1(q)

=
1

(2πi)m

∫
M

det 1/2

(
R/2

sinhR/2

)
tr S/∆(exp(−FS))

=
1

(2πi)m

∫
M

det 1/2

(
−R/2

sinh−R/2

)
tr S/∆(exp(−FS))

=

∫
M

det 1/2

(
i

2πR/2

sinh i
2πR/2

)
tr S/∆(exp(

i

2π
FS))

=

∫
M

Â(TM) ∧ ch(S/∆)

6.7 First Applications of the Index Theorem
Example 185. Let Mn=2m be a spin manifold and consider the Dirac bundle S∆ = PSpin ×Spin ∆ for the
unique irreducible representation ∆ of Spin (see Section 3.5.1), along with the canonical grading induced by
∆ = ∆+ ⊕ ∆−. As calculated on exercise sheet 13, the twisting curvature FS = 0 vanishes in this case.
Therefore, using Example 183 we get

ind(D) =

∫
M

Â(TM) =

∫
M

(
1− p1

24
+

1

5760
(−4p2 + 7p2

1) + · · ·
)
.

In particular, for the spinor Dirac operator we have ind(D) = 0 unless n is a multiple of four.

Theorem 186 (Lichnerowicz). Let M be closed spin manifold with Â(M) 6= 0. Then there exists no metric
g on M with positive scalar curvature scalg > 0.
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Proof. Recall the Weitzenböck formula D2 = ∆ + 1
4 scalg in Theorem 55 for the spinor Dirac operator.

Suppose scalg > 0. To prove the theorem we must show ind(D) = 0, by Example 185. For this we prove
that ker(D+) = 0; a similar argument shows ker(D−) = 0. Let Ds = 0 for s ∈ C∞(S+). Then

0 = 〈D2s, s〉 = 〈∆s, s〉+
1

4
scalg〈s, s〉

= 〈∇s,∇s〉+
1

4
scalg〈s, s〉

is a sum of non-negative numbers. It follows that these must both be zero, so ‖s‖2 = 0 and s = 0. This
proves ker(D+) = 0.

Example 187. For a K3-surface, Â(M) 6= 0 (this is a certain 4-manifold for which specific constructions
exist, but which usually defined in terms of its properties). The signature of a K3-surface may be computed
from its Hodge diamond, using a famous theorem by Hodge. Hence L(M) = −16 and Â(M) = − 1

8 ·L(M) = 2.
Here, the relationship between L(M) and Â(M) for 4-dimensional manifolds follows from Example 183. Note
that the K3-surface is spin.

The spin condition is essential in Theorem 186. For example, Â(CP 2) = −1/8, but CP 2 has a metric of
positive scalar curvature (the Fubini-Study metric). In particular, CP 2 is not spin.

Theorem 188 (Hirzebruch Signature Theorem). Let Mn=2m be an oriented closed manifold. Then

signature(M) =

∫
M

L(M).

(recall here the Pontrjagin L-genus from Example 183.)

Proof. We have already seen in Examples 135 and 138 that the complexified bundle of exterior forms S =
Λ∗(T ∗M)⊗C with the grading given essentially by the Hodge operator leads to the signature operator D =
d+d∗. The twist curvature can be computed to be given by the Pontrjagin f -class for f(z) = 2m cosh(

√
z/2).

Hence the signature itself is the Pontrjagin genus for 2m
√
z/2

sinh
√
z/2
·cosh(

√
z/2), which is the same as the genus

for
√
z

tanh
√
z
.

Example 189. Since L(TM) = 1 + p1
3 + 1

45 (7p2 − p2
1) + · · · , for 4-manifolds M4 we get

signature(M4) =
p1(M)

3
.

Similarly, for M spin ind(D) = Â(M) = −p124 .

The signature and index are integers. This leads to divisibility theorems for characteristic numbers. For
example, the signature theorem implies that p1(M) is always a multiple of 3!

Theorem 190 (Rokhlin). If M4 is a 4-dimensional closed spin manifold, then Â(M) is even. In particular,
the signature of a closed spin 4-manifold is divisible by 16.

Proof. The Clifford algebra Cl(4) may be identified with H2×2 and the unique irreducible representation ∆
of Cl(4) is then H2. The action is by usual matrix-vector multiplication. In particular, ∆ is a quaternionic
vector space. This quaternionic structure (from the right) is compatible with Clifford multiplication (from
the left), so the associated spinor Dirac bundle is a quaternionic vector bundle. Moreover, the Dirac operator
is equivariant under H. In particular, the spaces ker(D±) are quaternionic, so their complex dimension is a
multiple of two.

A famous application of the Atiyah-Singer index theorem in complex geometry is the theorem ofHirzebruch-
Riemann-Roch. Some information can be found on p. 175 ff. in [Roe].
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